
Approximate Anchored Densest Subgraph Search on Large Static
and Dynamic Graphs

Qi Zhang
‡

University of Science and Technology Beijing

Beijing, China

qizhangcs@163.com

Yalong Zhang

Beijing Institute of Technology

Beijing, China

yalong-zhang@qq.com

Rong-Hua Li

Beijing Institute of Technology

Beijing, China

lironghuabit@126.com

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggrbit@gmail.com

ABSTRACT
Densest subgraph search, aiming to identify a subgraph with max-

imum edge density, faces limitations as the edge density inade-

quately reflects biases towards a given vertex set 𝑅. To address

this, the 𝑅-subgraph density was introduced, refining the doubled

edge density by penalizing vertices in a subgraph but not in 𝑅, us-

ing the degree as a penalty factor. This advancement leads to the

Anchored Densest Subgraph (ADS) search problem, which finds

the subgraph 𝑆 with the highest 𝑅-subgraph density for a given

set 𝑅. Nonetheless, current algorithms for ADS search face signifi-

cant inefficiencies in handling large-scale graphs or the sizable 𝑅

set. Furthermore, these algorithms require re-computing the ADS

whenever the graph is updated, complicating the efficient main-

tenance within dynamic graphs. To tackle these challenges, we

propose the concept of integer 𝑅-subgraph density and study the

problem of finding a subgraph 𝑆∗ ⊆ 𝑉 with the highest integer

𝑅-subgraph density. We reveal that the 𝑅-subgraph density of 𝑆∗

provides an additive approximation to that of ADS with a difference

of less than 1, and hence 𝑆∗ is termed the Approximate Anchored

Densest Subgraph (AADS). For searching the AADS, we present an

efficient global algorithm incorporating the re-orientation network

flow technique and binary search, operating in a time polynomial

to the graph’s size. Additionally, we propose a novel local algorithm

using shortest-path-based methods for the max-flow computation

from 𝑠 to 𝑡 around 𝑅, markedly boosting performance in scenarios

with larger 𝑅 sets. For dynamic graphs, both basic and improved

algorithms are developed to efficiently maintain the AADS when

an edge is updated. Extensive experiments and a case study demon-

strate the efficiency, scalability, and effectiveness of our solutions.

PVLDB Reference Format:
Qi Zhang

‡
, Yalong Zhang, Rong-Hua Li, and Guoren Wang. Approximate

Anchored Densest Subgraph Search on Large Static and Dynamic Graphs.

PVLDB, 18(3): 623-636, 2024. doi:10.14778/3712221.3712230

PVLDB Artifact Availability:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 18, No. 3 ISSN 2150-8097.

doi:10.14778/3712221.3712230

‡
Work partially done at Beijing Institute of Technology.

The source code, data, and/or other artifacts have been made available at

https://github.com/qizhang1996/aads.

1 INTRODUCTION
A graph, denoted by 𝐺 = (𝑉 , 𝐸), where vertices represent entities
and edges represent relationships, serves as a fundamental model

for various complex real-world networks [1, 2, 35, 41, 51]. Densest

subgraph search, a central problem in graph analysis, aims to iden-

tify a subgraph 𝑆 with the maximum edge density, which is defined

as the ratio of the number of edges to the number of vertices, i.e.,

|𝐸 (𝑆) |
|𝑉 (𝑆) | [8, 9, 15, 29, 38, 54, 61, 62]. This problem has unveiled their

extensive applicability across various domains, such as identifying

dense structures in scientific collaborations [48], biological net-

works [28, 57], and social networks [33, 45, 53]. Furthermore, this

investigation has significantly advanced graph database, notably in

the areas of query processing [19, 37] and visualization [68, 71].

Densest subgraph search based on the edge density identifies

a globally densest subgraph, which often does not meet the re-

quirements of practical applications. In many cases, users require a

locally cohesive subgraph that not only contains an anchor vertex

set 𝐴 but is also biased toward a specific reference vertex set 𝑅. For

example, in a co-purchasing network, each vertex represents a prod-

uct, and an edge between two vertices denotes the co-purchasing of

those items. Given the set of items 𝑅 that the user has browsed and

the set of items 𝐴 that have been purchased, the system anticipates

a tightly connected subgraph structure. Items outside of 𝑅 in this

structure not only be closely related to the purchased items but also

include as many of the browsed items as possible. Prioritizing these

items can enhance recommendation accuracy and boost revenue.

In academic research, a professor aims to form a team to tackle a

complex problem and he identifies a set of potential collaborators 𝑅

and a subset of essential researchers 𝐴 ⊆ 𝑅. The professor queries

an academic collaboration network by providing the vertex sets 𝑅

and 𝐴, expecting to obtain a densely connected community that

includes all members of𝐴 and incorporates as many members from

𝑅 as possible, thereby enhancing research efficiency.

To address such real-world applications, Dai et al. [20] introduces
the concept of 𝑅-subgraph density to measure a subgraph 𝑆 ’s predis-

position towards a reference vertex set 𝑅. The 𝑅-subgraph density,

denoted as 𝜌𝑅 (𝑆) =
2 |𝐸 (𝑆) |−∑︁𝑣∈𝑆\𝑅 𝑑𝐺 (𝑣)

|𝑉 (𝑆) | , refines the doubled tra-

ditional density by imposing a penalty 𝑑𝐺 (𝑣) (i.e., the degree of a
vertex in 𝐺) in the numerator for each vertex 𝑣 in 𝑆\𝑅. Using the

623

https://doi.org/10.14778/3712221.3712230
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3712221.3712230
https://github.com/qizhang1996/aads
https://www.acm.org/publications/policies/artifact-review-and-badging-current

𝑅-subgraph density, Dai et al. [20] formulate the anchored densest

subgraph search problem, which seeks to identify the subgraph

𝑆 ⊇ 𝐴with the highest 𝜌𝑅 (𝑆) for a reference set 𝑅 and an anchor set

𝐴. They propose a global algorithm, ADSGA, whose time complex-

ity grows polynomially with the size of 𝐺 , and a local algorithm,

ADSLA, with complexity dependent solely on the size of𝑅. However,

since the definition of ADS is based on 𝑅-subgraph density, ADSGA
and ADSLA must probe every possible real value of 𝜌𝑅 (𝑆), leading
to inefficiencies when processing large-scale graphs or large 𝑅 sets.

Moreover, the ADSLA algorithm’s reliance on iterative subgraph

expansion results in only marginal efficiency gains compared to

ADSGA. Additionally, graph updates require a full recalculation due
to the high number of affected edges, posing significant challenges

for the efficient maintenance of ADS in dynamic graphs.

To overcome the limitations imposed by 𝑅-subgraph density,

we propose a novel metric called integer 𝑅-subgraph density for a

subgraph 𝑆 , denoted by 𝜌𝑅 (𝑆) = ⌈
2 |𝐸 (𝑆) |−∑︁𝑣∈𝑆\𝑅 𝑑𝐺 (𝑣)

|𝑉 (𝑆) | ⌉, and inves-
tigate the problem of finding a subgraph 𝐴 ⊆ 𝑆∗ ⊆ 𝑉 of𝐺 with the

highest 𝜌𝑅 (𝑆) on large static and dynamic graphs. We reveal that

𝜌𝑅 (𝑆∗) = ⌈𝜌𝑅 (𝑆)⌉, i.e., 𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆∗) < 1, where 𝑆 represents

the ADS, and hence 𝑆∗ is called the approximate anchored dens-

est subgraph. To search the AADS, we first introduce an efficient

global algorithm that incorporates a re-orientation network flow

technique and a binary search, addressing concerns of scalability.

Subsequently, a novel local algorithm is proposed that leverages

shortest-path based methods for localized max-flow computation

from 𝑠 to 𝑡 around 𝑅. This algorithm significantly improves perfor-

mance in scenarios involving larger values of |𝑅 |. Additionally, for
dynamic graphs, we prove a novel anchored densest subgraph up-

date theorem, based on which both basic and improved algorithms

are presented to efficiently maintain the AADS for edge insertions

and deletions. In summary, our contributions are as follows.

A global algorithm for AADS search. To compute the AADS,

we present an algorithm, named AADSGA, incorporating the re-

orientation network flow technique alongside a binary searchmethod.

Specifically, the re-orientation network flow technique evaluates

whether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 using the max-flow method, while the bi-

nary search iteratively adjusts the guessed value 𝛼 to ascertain the

AADS. Remarkably, the AADSGA algorithm requires only an inte-

ger guess for 𝛼 , resulting in a time complexity of 𝑂 (𝑚1.5
log𝑑max)

with the classic Dinic’s max-flow method [65], where 𝑑𝑚𝑎𝑥 is the

maximum degree of vertices in a graph. This represents a signifi-

cant efficiency improvement over the ADSGA algorithm, tailored

for ADS search, which has a time complexity of 𝑂 (𝑛𝑚 log𝑛).
A novel local algorithm for AADS search. To improve the ef-

ficiency, we propose a novel local algorithm, denoted as AADSLA.
A central innovation of AADSLA is the introduction of the prob-

ing method, LReTest, which leverages shortest-path based meth-

ods for local max-flow computation from 𝑠 to 𝑡 around 𝑅. Signifi-

cantly, for a specified 𝛼 , whereas the probing method of ADSLA de-

termines the max-flow through a sequence of progressively ex-

panding subgraphs, LReTest eliminates the necessity for this in-

tricate iterative mechanism. Instead, it achieves max-flow compu-

tation in tandem with the construction of the locally augmented

subgraph. The AADSLA algorithm exhibits a time complexity of

𝑂 (log𝑑maxVol
3 (𝑅)) where Vol(𝑅) is the sum of degrees of vertices

in 𝑅. In contrast, the ADSLA algorithm, in its last iteration, fea-

tures O(Vol2 (𝑅)) vertices and O(Vol2 (𝑅)) edges. Using the state-
of-the-art max-flow method, the final iteration complexity reaches

𝑂 (Vol4 (𝑅)), thus establishing the minimum overall complexity of

ADSLA at 𝑂 (log𝑛Vol4 (𝑅)), markedly surpassing that of AADSLA.
The efficient algorithms for AADS maintenance. To handle

dynamic updates of the graph, we prove a novel anchored densest

subgraph update theorem, which elucidates that the insertion or

deletion of an edge can cause ⌈𝜌𝑅 (𝑆)⌉ to either remain unchanged,

increase by 1, or decrease by 1. Based on this theorem, two fun-

damental algorithms: Ins and Del are proposed for handling edge

insertions and deletions, respectively. These algorithms enable the

efficient maintenance of the AADS through merely two probes

of the guessed value 𝛼 , achieving a computational complexity of

𝑂 (𝑚1.5). Furthermore, we present two improved algorithms, Ins+
and Del+, which focus on maintaining an unreversible orientation
�⃗� and two important subgraphs to preserve the AADS (details

see Section 5.2). The worst-case time complexity of our improved

algorithms is 𝑂 (Vol3 (𝑅)) because they necessitates applying the

LReTest whenever ⌈𝜌𝑅 (𝑆)⌉ changes. In empirical evaluations, both

Ins+ and Del+ demonstrate high efficiency as they require merely

limited BFS computations in the majority of cases.

Extensive experiments. We conduct comprehensive experiments

on 7 large real-life graphs from different domains to evaluate the ef-

ficiency of our algorithms for the search and maintenance of AADS.

The results show that: (1) AADSGA for AADS search achieves

speeds 3 to 13 times faster and reduces memory consumption by

3.5 to 6.5 times compared to ADSGA tailored for ADS search; (2)

The AADSLA algorithm demonstrably outperforms ADSLA, with
speedups ranging from 5 to 1500 times, while only marginally in-

creasing memory usage; (3) For AADS maintenance, our basic and

improved algorithms are significantly superior to the method that

recomputes the ADS (AADS) using ADSLA (AADSLA). Ins+ (Del+)
consistently outperforms Ins (Del) by at least an order of magni-

tude across all datasets; (4) The divergence in 𝑅-subgraph densities

between the ADS 𝑆 and the AADS 𝑆∗, namely, 𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆∗),
invariably remains below 0.2, a figure substantially lower than the

theoretical maximum difference of 1. Additionally, we also conduct

a case study on dblp to illustrate the effectiveness of the AADS. The
results show that AADS can better align a given reference set 𝑅

compared to the exact ADS, while maintaining a close 𝑅-subgraph

density to that of the ADS. For reproducibility, the source code of

this paper is released (see Artifact availability).

Due to the space limits, all the missing proofs can be found in

the full version of this paper [67].

2 PRELIMINARIES
Consider an unweighted and undirected graph𝐺 = (𝑉 , 𝐸), where
𝑉 is the set of vertices and 𝐸 denotes the set of edges. Let 𝑛 and

𝑚 symbolize the number of vertices and edges in 𝐺 , respectively.

An edge between vertices 𝑢 and 𝑣 in 𝐺 is denoted as (𝑢, 𝑣) and
equivalently, (𝑣,𝑢). The neighbors of 𝑢 within𝐺 , 𝑁𝐺 (𝑢), is defined
as {𝑣 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}, and the degree of 𝑢 within𝐺 , 𝑑𝐺 (𝑢), is given
by the cardinality of 𝑁𝐺 (𝑢). For a vertex subset 𝑆 of 𝑉 , 𝑁𝐺 (𝑆)
represents the set of neighbors of vertices in 𝑆 , formally expressed as

𝑁𝐺 (𝑆) = {𝑣 ∈ 𝑉 \𝑆 |∃𝑢 ∈ 𝑆, (𝑢, 𝑣) ∈ 𝐸}, and 𝐸 (𝑆) specifies the edges
connecting verticeswithin 𝑆 , defined as 𝐸 (𝑆) = {(𝑢, 𝑣) ∈ 𝐸 |𝑢, 𝑣 ∈ 𝑆}.
For two disjoint vertex subsets 𝑆 and 𝑇 , the cross edges between

𝑆 and 𝑇 are denoted as 𝐸× (𝑆,𝑇) = {(𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝑆, 𝑣 ∈ 𝑇 }, and

624

the additional edges from 𝑆 with respect to 𝑇 as 𝐸△ (𝑆,𝑇) = 𝐸 (𝑆) ∪
𝐸× (𝑆,𝑇). Given an unweighted and directed graph �⃗� = (𝑉 , �⃗�) with
𝑉 as the set of vertices and �⃗� as the set of directed edges. The

directed edge from 𝑢 to 𝑣 is represented by ⟨𝑢, 𝑣⟩. A path in this

directed graph is a sequence of vertices 𝑣𝑠 = 𝑣0, 𝑣1, ..., 𝑣𝑙−1, 𝑣𝑙 = 𝑣𝑡 ,

where ⟨𝑣𝑖−1, 𝑣𝑖 ⟩ ∈ �⃗� for 𝑖 = 1, ..., 𝑙 ; for conciseness, this path can

also be represented as 𝑣𝑠 〜 𝑣𝑡 . The set of in-neighbors of 𝑢 in �⃗� is

denoted as 𝑁
�⃗�
(𝑢) = {𝑣 ∈ 𝑉 | ⟨𝑣,𝑢⟩ ∈ �⃗�}, and the indegree of 𝑢 in �⃗�

is 𝑑
�⃗�
(𝑢) = |𝑁

�⃗�
(𝑢) |. For simplicity, we omit the subscripts𝐺 and �⃗�

in the above notations when the context is clear.

Below, we first elucidate the concepts of 𝑅-subgraph density and

anchored densest subgraph.

Definition 2.1. (𝑅-subgraph Density [20]) Given a graph 𝐺 =
(𝑉 , 𝐸) and a reference vertex set 𝑅 ⊆ 𝑉 , the 𝑅-subgraph density of

a subgraph 𝑆 ⊆ 𝑉 is defined as:

𝜌𝑅 (𝑆) =
2 |𝐸 (𝑆) | − ∑︁

𝑣∈𝑆\𝑅 𝑑𝐺 (𝑣)
|𝑉 (𝑆) |

(1)

Definition 2.2. (Anchored Densest Subgraph [20]) Given an undi-

rected graph 𝐺 = (𝑉 , 𝐸), an anchor vertex set 𝐴 ⊆ 𝑉 , a reference

vertex set 𝑅 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅, the ADS, denoted
as 𝑆 , is a subgraph of 𝐺 that includes all vertices in 𝐴 and exhibits

the maximum 𝑅-subgraph density, i.e., 𝑆 = argmax𝐴⊆𝑆⊆𝑉 𝜌𝑅 (𝑆).

Example 2.3. Consider a graph 𝐺 = (𝑉 , 𝐸) as shown in Figure 1.

Let the vertex sets 𝑅 and𝐴 be given as 𝑅 = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣8} and
𝐴 = {𝑣6}, respectively. For the vertex set 𝑆 = {𝑣1, 𝑣3, 𝑣4, 𝑣5, 𝑣6}, the
𝑅-subgraph density of 𝑆 , 𝜌𝑅 (𝑆), is calculated to be

2×8−0
5

= 3.2. It

is determined that 𝑆 possesses the highest 𝑅-subgraph density with

𝐴 ⊆ 𝑆 , identifying it as the ADS (i.e., the area within the red dotted

line in Figure 1).

Motivated by Definition 2.1 and Definition 2.2, we introduce the

concepts of integer 𝑅-subgraph density and approximate anchored

densest subgraph as follows.

Definition 2.4. (Integer 𝑅-Subgraph Density) Given a graph 𝐺 =
(𝑉 , 𝐸) and a reference vertex set 𝑅 ⊆ 𝑉 , the integer 𝑅-subgraph
density of a subgraph 𝑆 ⊆ 𝑉 is defined as:

𝜌𝑅 (𝑆) = ⌈
2 |𝐸 (𝑆) | − ∑︁

𝑣∈𝑆\𝑅 𝑑𝐺 (𝑣)
|𝑉 (𝑆) | ⌉ (2)

Definition 2.5. (Approximate AnchoredDensest Subgraph) Given

an undirected graph 𝐺 = (𝑉 , 𝐸), an anchor vertex set 𝐴 ⊆ 𝑉 , a

reference vertex set 𝑅 ⊆ 𝑉 satisfying 𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ ∅, the
AADS, denoted as 𝑆∗, is a subgraph of𝐺 that includes all vertices

in 𝐴 and exhibits the maximum integer 𝑅-subgraph density, i.e.,

𝑆∗ = argmax𝐴⊆𝑆⊆𝑉 𝜌𝑅 (𝑆).

According to Definition 2.2 and Definition 2.5, the following fact

is established.

Fact 2.6. Given the ADS 𝑆 and AADS 𝑆∗, 𝜌𝑅 (𝑆∗) = ⌈𝜌𝑅 (𝑆)⌉ holds,
i.e., 𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆∗) < 1.

The intuition behind the AADS. AADS relies on the integer

𝑅-subgraph density, and the number of possible values of 𝜌𝑅 (𝑆∗) is
much less compared to that of 𝜌𝑅 (𝑆∗), making AADS computation-

ally more efficient. Moreover, compared to the 𝑅-subgraph density,

the integer 𝑅-subgraph density of AADS changes less frequently

when edges are inserted or deleted, thus can be efficiently main-

tained in dynamic graph cases. Finally, Fact 2.6 reveals that 𝜌𝑅 (𝑆∗)

v6

v8

v4v5

v3

v1

v11

v7

v2

v9

v10

Figure 1: An example graph 𝐺

provides an additive approximation to 𝜌𝑅 (𝑆), with a minimal loss of

precision, suggesting that AADS is a good approximation of ADS.

Problem Statement. Given an undirected graph 𝐺 = (𝑉 , 𝐸), an
anchor vertex set 𝐴 ⊆ 𝑉 , a reference vertex set 𝑅 ⊆ 𝑉 satisfying

𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ 0, our goal is to search and maintain the AADS

𝑆∗ on large static and dynamic graphs.

Remark. Fact 2.6 establishes theoretical guarantees for the additive
approximation less than 1. However, our empirical analyses indicate

that in real-world graphs, the difference between 𝜌𝑅 (𝑆) and 𝜌𝑅 (𝑆∗)
is considerably smaller than 1.

3 AN EFFICIENT GLOBAL ALGORITHM
This section proposes an efficient algorithm, namely, AADSGA, for
searching the AADS 𝑆∗. The essence of AADSGA is to employ a bi-

nary search strategy to examinewhether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 . Specifically,

if ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 , it is inferred that an increment in 𝛼 is justified.

Conversely, ⌈𝜌𝑅 (𝑆∗)⌉ < 𝛼 indicates a need to reduce 𝛼 . Below, we

begin by checking whether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 with the re-orientation

network flow technique, followed by a detailed introduction of the

AADSGA algorithm integrating a binary search approach.

3.1 Checking whether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼

Here we propose a probing algorithm, called ReTest, equipped
with the re-orientation network flow technique to check whether

⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 . Prior to delving into ReTest, we introduce three

important concepts: orientation, bounty, and re-orientation network.

Definition 3.1. (Orientation) Given a graph 𝐺 = (𝑉 , 𝐸), the ori-
entation of 𝐺 , represented as �⃗� = (𝑉 , �⃗�), is a directed graph where

the vertex set remains identical to that of 𝐺 ; while, for each edge

(𝑢, 𝑣) in 𝐸, �⃗� features two directed edges between 𝑢 and 𝑣 .

Definition 3.2. (Bounty) Given a graph 𝐺 and its orientation

�⃗� = (𝑉 , �⃗�), the bounty of a vertex 𝑢, denoted as 𝛿𝑢 , is defined as:

(1) 𝛿𝑢 = +∞ if 𝑢 ∈ 𝐴; (2) 𝛿𝑢 = 𝑑 (𝑢) if 𝑢 ∈ 𝑅\𝐴; (3) 𝛿𝑢 = 𝑑 (𝑢) −𝑑 (𝑢)
if 𝑢 ∈ 𝑉 \𝑅.

Utilizing the concept of bounty, for a given value of 𝛼 , the re-

orientation network flow technique enables the construction of an

edge-weighted and directed graph 𝐺𝛼 = (𝑉𝛼 , �⃗�𝛼 , 𝑐) by augmenting

the orientation �⃗� = (𝑉 , �⃗�) as follows. (1) Add a source vertex 𝑠 and a
sink vertex 𝑡 to𝑉𝛼 , and add all vertices in𝑉 to𝑉𝛼 , i.e.,𝑉𝛼 = 𝑉∪{𝑠, 𝑡};
(2) For each directed edge ⟨𝑢, 𝑣⟩ ∈ �⃗�, add an arc ⟨𝑢, 𝑣⟩ to 𝐸𝛼 with

capacity 1; (3) For each vertex 𝑢 ∈ 𝑉 , add an arc ⟨𝑠,𝑢⟩ to 𝐸𝛼 , if

𝛿𝑢 < 𝛼 − 1 with capacity (𝛼 − 1) − 𝛿𝑢 ; (4) For each vertex 𝑢 ∈ 𝑉 ,
add an arc ⟨𝑢, 𝑡⟩ to 𝐸𝛼 , if 𝛿𝑢 > 𝛼 − 1 with capacity 𝛿𝑢 − (𝛼 − 1).

Example 3.3. Consider the graph 𝐺 depicted in Figure 1. We

assume that the orientation �⃗� of 𝐺 corresponds to the subgraph of

Figure 2, induced by all vertices of 𝐺 , wherein all directed edges

orient towards vertices possessing higher IDs. Given the same sets

𝑅 and 𝐴 as in Example 2.3 and 𝛼 = 3, the re-orientation network

625

Algorithm 1: AADSGA(𝐺,𝐴, 𝑅)
Input: An undirected graph𝐺 = (𝑉 , 𝐸) , an anchor vertex set𝐴 ⊆ 𝑉 , a

reference vertex set 𝑅 ⊆ 𝑉 satisfying𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ 0

Output: The AADS 𝑆∗
1 𝛼𝑙 ← 1; 𝛼𝑢 ← max𝑢∈𝑅 𝑑 (𝑢) ;
2 while 𝛼𝑙 < 𝛼𝑢 do
3 𝛼𝑚 ← ⌈(𝛼𝑙 + 𝛼𝑢 + 1)/2⌉;
4 𝑆∗ ← ReTest(𝐺,𝐴, 𝑅, 𝛼𝑚) ;
5 if ⌈𝜌𝑅 (𝑆∗) ⌉ ≥ 𝛼 then 𝛼𝑙 ← 𝛼𝑚 ;

6 else 𝛼𝑢 ← 𝛼𝑚 − 1;

7 return ReTest(𝐺,𝐴, 𝑅, 𝛼𝑙) ;
8 Procedure ReTest(𝐺,𝐴, 𝑅, 𝛼)
9 �⃗� ← ∅;

10 foreach (𝑢, 𝑣) ∈ 𝐸 do
11 �⃗� ← �⃗� ∪ ⟨𝑢, 𝑣⟩; �⃗� ← �⃗� ∪ ⟨𝑢, 𝑣⟩;

12 foreach 𝑢 ∈ 𝑉 \𝑅 do 𝛿𝑢 ← 𝑑 (𝑢) − 𝑑 (𝑢) ;
13 foreach 𝑢 ∈ 𝑅\𝐴 do 𝛿𝑢 ← 𝑑 (𝑢) ;
14 foreach 𝑢 ∈ 𝐴 do 𝛿𝑢 ← +∞;
15 Construct the re-orientation network𝐺𝛼 = (𝑉𝛼 , �⃗�𝛼 , 𝑐) ;
16 Compute a maximum flow 𝑓max in𝐺𝛼 = (𝑉𝛼 , �⃗�𝛼 , 𝑐) by Dinic’s algorithm;

17 foreach ⟨𝑢, 𝑣⟩ ∈ �⃗� do
18 if ⟨𝑢, 𝑣⟩ is satruated in𝐺𝛼 then Reverse the edge ⟨𝑢, 𝑣⟩ ∈ �⃗�;
19 return 𝑆 ← {𝑢 ∈ 𝑉 |𝛿𝑢 ≥ 𝛼 or 𝑢 can reach a vertex 𝑣 with 𝛿𝑣 ≥ 𝛼 };

v4v5

v8

v3

v1

v6 st

v10

v2

v9

v7

v11

+∞

2

4

2

2

4

2

5

7

Figure 2: The initial orientation �⃗� of 𝐺

𝐺𝛼 is illustrated as Figure 2. Within𝐺𝛼 , all edges in �⃗� are assigned

a weight of 1, which we omit for clarity.

Based on the re-orientation network, the ReTest algorithm es-

tablishes a relationship between the max-flow computation on𝐺𝛼

and the 𝑅-subgraph density of a subgraph to determine whether

⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 . The pseudo-code of ReTest is outlined in lines 8-19

of Algorithm 1. Initially, ReTest constructs the orientation �⃗� by

inserting the directed edge ⟨𝑢, 𝑣⟩ twice for each edge (𝑢, 𝑣) in 𝐺

(lines 10-11). It then calculates the bounty of each vertex in𝐺 (lines

12-14) and constructs the re-orientation network 𝐺𝛼 with a guess

value 𝛼 (line 15). The algorithm proceeds to compute the maximum

flow on 𝐺𝛼 and reverses the direction of each edge in �⃗� if it is sat-

urated in 𝐺𝛼 (lines 16-18). Ultimately, the ReTest algorithm yields

a subgraph 𝑆 comprising all vertices with a bounty not less than

𝛼 , or those capable of reaching a vertex with a bounty that meets

or exceeds 𝛼 (line 19). Regarding the subgraph 𝑆 , the following

theorem establishes the correctness of the ReTest algorithm.

Theorem 3.4. The subgraph 𝑆 output by the ReTest algorithm
exhibits the following properties: (1) 𝐴 ⊆ 𝑆 and ⌈𝜌𝑅 (𝑆)⌉ ≥ 𝛼 if
⌈𝜌𝑅 (𝑆)⌉ ≥ 𝛼 ; (2) 𝐴 ⊆ 𝑆 and ⌈𝜌𝑅 (𝑆)⌉ < 𝛼 if ⌈𝜌𝑅 (𝑆)⌉ < 𝛼 .

3.2 The AADSGA algorithm
With Section 3.1, we propose the AADSGA algorithm which utilizes

a binary search on 𝛼 to identify the AADS. The binary search

requires establishing the guess value 𝛼 ’s range, where the lower

bound is intuitively set to 1, and the upper bound, as inferred from

[20], is max𝑢∈𝑅 𝑑 (𝑢). The pseudo-code of AADSGA is depicted in

Algorithm 1. It first initializes the lower bound 𝛼𝑙 and the upper

bound 𝛼𝑢 and then iteratively computes the middle value 𝛼𝑚 and

invokes ReTest(𝐺,𝐴, 𝑅, 𝛼𝑚) to yield a subgraph 𝑆∗. If ⌈𝜌𝑅 (𝑆∗)⌉ ≥
𝛼 , then 𝛼𝑙 is updated to 𝛼𝑚 (line 5); otherwise, 𝛼𝑢 is adjusted to

𝛼𝑚 − 1 (line 6). The iterative process terminates once 𝛼𝑙 equals 𝛼𝑢 ,

and the algorithm performs ReTest(𝐺,𝐴, 𝑅, 𝛼𝑙) again to capture the

AADS 𝑆∗ (line 7). The following theorem shows the correctness

and complexity of Algorithm 1.

Theorem 3.5. Algorithm 1 outputs the AADS 𝑆∗ correctly with
the time complexity of 𝑂 (𝑚1.5

log𝑑max) and the space complexity of
𝑂 (𝑚 + 𝑛).

Discussions. The time complexity of AADSGA for AADS search,

𝑂 (𝑚1.5
log𝑑max), is significantly lower than the 𝑂 (𝑛𝑚 log𝑛) held

by ADSGA, tailored for ADS search. This is because AADSGA per-

forms a binary search only on integer values (log𝑑max), whereas

ADSGA requires a binary search on fractional values (log𝑛) and

𝑛 >
√
𝑚 holds. Our later experiments confirm this theoretical result.

4 A NOVEL LOCAL ALGORITHM
Although the AADSGA algorithm operates within polynomial time

complexity, its scalability is still limited when applied to large-scale

graphs. This section presents a novel local algorithm, i.e., AADSLA,
to solve the AADS search problem. A significant innovation within

AADSLA is the introduction of a novel probing method LReTest,
which enables the localized computation of the max-flow from

𝑠 to 𝑡 around 𝑅 without necessitating access to (or construction

of) the entire augmented graph 𝐺𝛼 . Below, we first introduce the

AADSLA algorithm and the LReTest algorithm and then proceed to

the theoretical analysis.

4.1 The framework of AADSLA algorithm
The AADSGA algorithm initializes the orientation �⃗� by inserting

⟨𝑢, 𝑣⟩ into �⃗� twice for each edge (𝑢, 𝑣) ∈ 𝐺 . After this initialization

method, it is impossible to determine the bounty of each vertex,

thus the algorithm needs to traverse all vertices to construct the
re-orientation network, and therefore it is not local.

We introduce a novel initialization approach for �⃗� , namely “bi-

directional orientation”, which entails inserting both ⟨𝑢, 𝑣⟩ and
⟨𝑣,𝑢⟩ for every edge (𝑢, 𝑣). This method ensures that the bounty

of the vertices in the orientation after initialization is definite and

regular since each vertex𝑢 receives a precise tally of 𝑑 (𝑢) incoming

edges. Combined with the definition, it follows that vertices within

the set 𝑅\𝐴 have a bounty equal to 𝑑 (𝑢), whereas all other vertices
in𝑉 \𝑅 have a bounty of exactly 0. As a result, only the vertices in 𝑅

are connected to the sink 𝑡 . Intuitively, the augmenting paths found

by the maximum flow algorithm often pass only through vertices

near 𝑅, while vertices farther from the set 𝑅 are not considered.

This forms the rationale for designing our local algorithm.

With the concept of a bi-directional orientation, we propose

the AADSLA algorithm, detailed in Algorithm 2. This algorithm

adopts a binary search framework to compute the AADS, with the

following distinctions from AADSGA. Firstly, AADSLA determines

if ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 for a specified guess value 𝛼 by using LReTest (Al-
gorithm 3, detailed in Section 4.2), which locally computes the

max-flow from 𝑠 to 𝑡 around 𝑅 in 𝐺𝛼 with shortest-path based

method (line 13, line 16). Secondly, the orientation �⃗� is progres-

sively constructed in executing a local search. A set𝑉𝐴
is employed

626

Algorithm 2: AADSLA(𝐺,𝐴, 𝑅)
Input: An undirected graph𝐺 = (𝑉 , 𝐸) , an anchor vertex set𝐴 ⊆ 𝑉 and a

reference vertex set 𝑅 ⊆ 𝑉 satisfying𝐴 ⊆ 𝑅 and 𝐸 (𝑅) ≠ 0

Output: The AADS 𝑆∗
1 Vol(𝑅) ← 0;

2 �⃗� ← ∅;𝑉𝐴 ← ∅;
3 foreach 𝑢 ∈ 𝑅 do
4 Vol(𝑅) ← Vol(𝑅) + 𝑑 (𝑢) ;
5 𝑉𝐴 ← 𝑉𝐴 ∪ {𝑢};
6 InitOri(𝑢) ;
7 if 𝑢 ∈ 𝐴 then 𝛿𝑢 ← +∞;
8 else 𝛿𝑢 ← 𝑑 (𝑢) ;
9 foreach 𝑢 ∈ 𝑉 \𝑅 do 𝛿𝑢 ← 0;

10 𝛼𝑙 ← 1; 𝛼𝑢 ← max𝑢∈𝑅 𝑑 (𝑢) ;
11 while 𝛼𝑙 < 𝛼𝑢 do
12 𝛼𝑚 ← ⌈(𝛼𝑙 + 𝛼𝑢 + 1)/2⌉;
13 𝑆∗ ← LReTest(�⃗�,𝐴, 𝑅, 𝛼𝑚,𝑉𝐴) ;
14 if ⌈𝜌𝑅 (𝑆∗) ⌉ ≥ 𝛼 then 𝛼𝑙 ← 𝛼𝑚 ;

15 else 𝛼𝑢 ← 𝛼𝑚 − 1;

16 return LReTest(�⃗�,𝐴, 𝑅, 𝛼𝑙 ,𝑉
𝐴) ;

17 Procedure InitOri(𝑢)
18 if 𝑢 ∉ 𝑉𝐴 then
19 𝑉𝐴 ← 𝑉𝐴 ∪ {𝑢};
20 foreach 𝑣 ∈ 𝑁𝐺 (𝑢) and 𝑣 ∉ 𝑉𝐴 do
21 �⃗� ← �⃗� ∪ ⟨𝑢, 𝑣⟩; �⃗� ← �⃗� ∪ ⟨𝑣,𝑢 ⟩;

to determine whether 𝑢’s adjacent edges have been integrated into

�⃗� , thereby ensuring that each vertex 𝑢 is processed only once (line

2). For each vertex 𝑢 ∉ 𝑉𝐴
, the InitOri procedure is invoked follow-

ing the bi-directional orientation construction method. It inserts

⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩ for each edge (𝑢, 𝑣) associated with 𝑢 into �⃗� (lines

17-21). Before performing LReTest, AADSLA initializes by invoking

InitOri for each vertex in 𝑅 (line 6) and calculating Vol(𝑅), defined
as the sum of the degrees of all vertices in 𝑅 (line 4). Vol(𝑅) is crucial
for computing the local max-flow of LReTest (see Lemma 4.1). Ad-

ditionally, vertices in 𝐴 are assigned an infinite bounty, vertices in

𝑅\𝐴 receive a bounty equal to their degree, and others are allocated

a bounty of 0 (lines 7-9).

4.2 Locally checking whether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼

Before introducing LReTest for identifying whether ⌈𝜌𝑅 (𝑆∗)⌉ ≥ 𝛼 ,

it is essential to delineate the concept of “reverse re-orientation net-

work”, which is instrumental in offering a more intuitive elucidation

of the algorithm’s locality.

Given an integer 𝛼 , the reverse re-orientation network,𝐺−1𝛼 =

(𝑉𝛼 , 𝐸−1𝛼 , 𝑐), is constructed by augmenting the bi-directional orien-

tation �⃗� = (𝑉 , �⃗�) as follows. (1) Add a source vertex 𝑠 and a sink

vertex 𝑡 to 𝑉𝛼 , and add all vertices in 𝑉 to 𝑉𝛼 , i.e., 𝑉𝛼 = 𝑉 ∪ {𝑠, 𝑡};
(2) For each directed edge ⟨𝑢, 𝑣⟩ ∈ �⃗�, add an arc ⟨𝑣,𝑢⟩ to 𝐸−1𝛼 with

capacity 1; (3) For each vertex 𝑢 ∈ 𝑉 , add an arc ⟨𝑠,𝑢⟩ to 𝐸−1𝛼 , if

𝛿𝑢 > 𝛼 −1with capacity 𝛿𝑢 − (𝛼 −1); (4) For each vertex𝑢 ∈ 𝑉 , add

an arc ⟨𝑢, 𝑡⟩ to 𝐸−1𝛼 , if 𝛿𝑢 < 𝛼 − 1 with capacity (𝛼 − 1) − 𝛿𝑢 . After
performing the max-flow computation on 𝐺−1𝛼 , there is no path

from 𝑠 to 𝑡 , and we can also yield a set 𝑆 including the vertices either

with a bounty of at least 𝛼 or that can reach another vertex with a

bounty of at least 𝛼 . According to Theorem 3.4, the correctness of

the probing method using 𝐺−1𝛼 is also established.

Based on the reverse re-orientation network, our goal is to im-

plement a local max-flow calculation starting from 𝑅. The probing

Algorithm 3: LReTest(�⃗�, 𝐴, 𝑅, 𝛼,𝑉𝐴
)

Input: An undirected graph𝐺 = (𝑉 , 𝐸) , an anchor vertex set𝐴 ⊆ 𝑉 , a

reference vertex set 𝑅 ⊆ 𝑉 , a non-negative integer 𝛼 , and the set𝑉𝐴

Output: A subgraph 𝑆 satisfying𝐴 ⊆ 𝑆

1 if 𝛼 = 1 then {𝑆 ← 𝑅; return 𝑆 };

2 𝑉𝑁 ← {𝑢 ∈ 𝑉𝐴 |𝛿𝑢 ≥ 𝛼 − 1};
3 foreach 𝑢 ∈ 𝑉𝑁 do InitOri(𝑢) ;
4 Construct the partial reverse re-orientation network𝐺−1

�̈�
according to �⃗�;

5 while true do
6 Perform BFS from the source node 𝑠 in𝐺−1

�̈�
to try to find a shortest path

⟨𝑠, 𝑣𝑠 , . . . , 𝑣𝑡 ⟩ in𝐺−1�̈�
where 𝑣𝑡 satisfies 𝛿𝑣𝑡 < 𝛼 − 1 or

𝑑 (𝑣𝑡) ≥ Vol(𝑅) ;
7 For each vertex 𝑢 visited by the BFS, invoke InitOri(𝑢) to update �⃗�;

8 Maintain𝐺−1
�̈�

according to the updated �⃗� in the process of BFS;

9 if there exists such a shortest path ⟨𝑠, 𝑣𝑠 , . . . , 𝑣𝑡 ⟩ in𝐺−1�̈�
then

10 Reverse the path ⟨𝑣𝑠 , . . . , 𝑣𝑡 ⟩ in �⃗�;

11 if 𝑣𝑡 ∉ 𝑉𝐴 and 𝑑 (𝑣𝑡) < Vol(𝑅) then𝑉𝐴 ← 𝑉𝐴 ∪ 𝑣𝑡 ;

12 if 𝛿𝑣𝑡 = 𝛼 − 1 and 𝑑 (𝑣𝑡) < Vol(𝑅) then𝑉𝑁 ← 𝑉𝑁 ∪ 𝑣𝑡 ;

13 else break;

14 𝑆 ← {𝑢 ∈ 𝑉 |𝛿𝑢 ≥ 𝛼 or 𝑢 can reach a vertex 𝑣 with 𝛿𝑣 ≥ 𝛼 };
15 return 𝑆 ;

method described in ADSLA initially constructs a subgraph, fol-

lowed by a max-flow computation and iterative subgraph expan-

sion until a solution is obtained. The LReTest algorithm integrates

max-flow computation with subgraph construction to simplify this

iterative process. It employs a shortest path-based approach which

identifies the shortest augmenting path to compute the max-flow.

Upon locating this path, all edges present are reversed in �⃗� . In the

computation of max-flow, a critical aspect involves determining

the termination of the shortest augmenting path during the BFS

procedure. Certainly, the absence of a path from source 𝑠 to sink

𝑡 in 𝐺−1𝛼 indicates that the search halts at a vertex with bounty

less than 𝛼 − 1. To enhance the efficiency of the BFS procedure, we

propose Lemma 4.1 that provides a novel approach to determine

the path’s endpoint.

Lemma 4.1. Given 𝛼 ≥ 2 and a subgraph 𝑆 with 𝜌𝑅 (𝑆) > 𝛼 − 1,
the degree 𝑑 (𝑢) for each vertex 𝑢 in 𝑆 satisfies 𝑑 (𝑢) < Vol(𝑅).

Equipped with Lemma 4.1, we propose the LReTest algorithm
detailed in Algorithm 3. This algorithm leverages the bi-directional

orientation from the previous iteration to expedite the construction

of the reverse re-orientation network. Specifically, it first checks if

𝛼 = 1. If this condition holds, i.e., 𝜌𝑅 (𝑆) ≤ 1, the algorithm directly

outputs the set 𝑅 as the AADS (line 1). For the case of 𝛼 ≥ 2,

corresponding to 𝜌𝑅 (𝑆) > 1, LReTest first adds the vertices in 𝑉𝐴

with a bounty no less than 𝛼 − 1 into 𝑉𝑁
(line 2). After initializing

𝑉𝑁
, it incorporates the adjacent edges of each vertex in 𝑉𝑁

into

the orientation for 𝛼 using the InitOri procedure (line 3).
With𝑉𝑁

and �⃗� , the partial reverse re-orientation network,𝐺−1
�̈�

,

is initialized, obviating the need for construction from scratch (line

4). Next, the LReTest algorithm progresses to the construction of the

local𝐺−1𝛼 based on𝐺−1
�̈�

and the max-flow computation phases, uti-

lizing a computation-while-expanding strategy (lines 5-13). It con-

tinuously executes the BFS procedure starting from the source node

𝑠 , aiming to identify the shortest augmenting path ⟨𝑠, 𝑣𝑠 , . . . , 𝑣𝑡 ⟩,
where 𝑣𝑡 meets 𝛿𝑣𝑡 < 𝛼 − 1 or 𝑑 (𝑣𝑡) ≥ Vol(𝑅), in accordance with

Lemma 4.1. Note that during the BFS process, as each vertex is

visited, the InitOri procedure is invoked to extend the orientation,

627

and then 𝐺−1
�̈�

is updated (lines 6-8). Upon discovering a shortest

augmenting path ⟨𝑠, 𝑣𝑠 , . . . , 𝑣𝑡 ⟩, all edges on this path, except for

the one connected to 𝑠 , are saturated. Consequently, these saturated

edges are reversed in the bi-directional orientation, and updates

are made to 𝑉𝐴
and 𝑉𝑁

(lines 10-12). The absence of augmenting

paths in𝐺−1
�̈�

signifies the completion of the max-flow computation.

At this juncture, Algorithm 3 outputs the vertex set 𝑆 , which com-

prises vertices either possessing a bounty of at least 𝛼 or capable

of reaching another vertex with a bounty of at least 𝛼 .

4.3 Analysis of correctness and locality
Using Theorem 3.4 and Lemma 4.1, we ascertain the correctness of

LReTest, ensuring that the AADSLA algorithm correctly outputs the

AADS. Next, we establish the locality of the AADSLA algorithm by

demonstrating that LReTest is local. LReTest constructs a local re-
verse re-orientation network𝐺−1

�̈�
, which we extend to be complete

for ease of analysis. Specifically, we introduce ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩ into
𝐺−1
�̈�

if 𝑢 and 𝑣 are not connected in 𝐺−1
�̈�

but (𝑢, 𝑣) ∈ 𝐸. Within the

complete𝐺−1𝛼 , let 𝑙 be the distance between 𝑠 and 𝑡 and dist(𝑠,𝑢) be
the distance between 𝑠 and 𝑢. Denote𝑉𝑖 by the vertex set defined as

𝑉𝑖 = {𝑢 ∈ 𝑉 | dist(𝑠,𝑢) ≤ 𝑖}. The following lemma is established.

Lemma 4.2. In 𝐺−1𝛼 , |𝑉𝑙−1 | ≤
Vol(𝑅)

𝛼 + |𝐴| ≤ 2Vol(𝑅) and |𝑉𝑙 | ≤
2Vol2 (𝑅).

With the established Lemma 4.2, we analyze the time complexity

of LReTest using the Dinic algorithm as a paradigmatic example of

a shortest path-based max-flow computation technique. Notably,

the implementation of the Dinic algorithm [65] herein includes an

optimization: during the BFS process, when exploring the adjacent

edges of a vertex 𝑢 in 𝑉𝑙−1, the search will terminate upon reach-

ing the edge (𝑢, 𝑡). This optimization halts the BFS prematurely,

preventing further traversal of other vertices.

Theorem 4.3. The LReTest algorithm, which employs the Dinic
algorithm for maximum flow computation, has a time complexity of
𝑂 (Vol3 (𝑅)) and a space complexity of 𝑂 (𝑚 + 𝑛).

Theorem 4.3 shows that the time complexity of LReTest is bounded
by a polynomial in terms of𝑂 (Vol(𝑅)), which is independent on the
size of graph. With this foundation, AADSLA is strongly local, with

a time complexity of 𝑂 (log𝑑max × Vol3 (𝑅)). The space complexity

of AADSLA is 𝑂 (𝑚 + 𝑛) as it needs to invoke LReTest.
Discussions.We analyze the time complexity of ADSLA for search-

ing ADS [20]. First, ADSLA needs to perform (log𝑛) local max-flow

computations. Second, the local max-flow computation method

in ADSLA iteratively extends the subgraph and performs compu-

tations. In the last iteration, the number of vertices and edges of

the subgraph are both O(Vol2 (𝑅)), causing the time complexity

to reach 𝑂 (Vol4 (𝑅)) using the state-of-the-art max-flow method.

Thus, the total time complexity of ADSLA is ≥ 𝑂 (log𝑛 × Vol4 (𝑅)).
Clearly, the time complexity of AADSLA for searching AADS, i.e.,

𝑂 (log𝑑max × Vol3 (𝑅)), is significantly lower than that of ADSLA.
Our subsequent experiments confirm this theoretical analysis.

5 THE MAINTAINANCE OF AADS
This section proposes efficient algorithms formaintaining theAADS

amidst updates to the graph. Initially, an ADS update theorem is

presented, based on which we propose the Ins and Del algorithms

Algorithm 4: Ins(𝐺,𝐴, 𝑅, 𝑆∗, (𝑢, 𝑣))
Input: An undirected graph𝐺 = (𝑉 , 𝐸) , an anchor vertex set𝐴, a reference

vertex set 𝑅, the AADS 𝑆∗ and an edge (𝑢, 𝑣) to be inserted

Output: The updated AADS 𝑆
∗

1 𝐸 ← 𝐸 ∪ { (𝑢, 𝑣) };
2 𝛼 ← ⌈𝜌𝑅 (𝑆∗) ⌉;
3 𝑆∗ ← ReTest(𝐺,𝐴, 𝑅, 𝛼) ;
4 if ⌈𝜌𝑅 (𝑆∗) ⌉ < 𝛼 then // Check if ⌈𝜌𝑅 (�̂�) ⌉ decreases by 1
5 𝑆∗ ← ReTest(𝐺,𝐴, 𝑅, 𝛼 − 1) ;
6 else
7 �̈� ← ReTest(𝐺,𝐴, 𝑅, 𝛼 + 1) ;
8 if ⌈𝜌𝑅 (�̈�) ⌉ ≥ 𝛼 + 1 then // Check if ⌈𝜌𝑅 (�̂�) ⌉ increases by 1
9 𝑆∗ ← ReTest(𝐺,𝐴, 𝑅, 𝛼 + 1) ;

10 return 𝑆∗ ;

for edge insertions and deletions, respectively. Moreover, the im-

proved algorithms, Ins+ and Del+, are developed, with a focus on

maintaining an unreversible orientation �⃗� to preserve the AADS.

5.1 ADS update theorem and basic algorithms
We first present the ADS update theorem, which forms the founda-

tion of the proposed Ins and Del algorithms for maintaining AADS.

Theorem 5.1. After a single edge insertion (resp., deletion) in 𝐺 ,
⌈𝜌𝑅 (𝑆)⌉ either remains unchanged, increases by 1, or decreases by 1.

According to Theorem 5.1, ⌈𝜌𝑅 (𝑆)⌉ remains constant or alters

by only one unit following the insertion or deletion of an edge, the

same applies to ⌈𝜌𝑅 (𝑆∗)⌉. Thus, merely two checks using ReTest are
required to identify the updated AADS. Based on this rationale, we

develop the Ins and Del algorithms for edge insertion and deletion.

The pseudo-code of Ins is outlined in Algorithm 4. Initially, the

algorithm inserts the edge (𝑢, 𝑣) into𝐺 , and calculates the current

round-up of the maximum 𝑅-subgraph density 𝛼 ← ⌈𝜌𝑅 (𝑆∗)⌉ (line
2). Subsequently, Ins invokes ReTest with the parameter 𝛼 , updat-

ing the subgraph 𝑆∗ (line 3). The algorithm then checks whether

⌈𝜌𝑅 (𝑆∗)⌉ < 𝛼 to determine if ⌈𝜌𝑅 (𝑆)⌉ decreases by 1 (line 4). If so,

Ins performs ReTestwith guess value 𝛼−1 to update 𝑆∗ as the AADS
after inserting edge (𝑢, 𝑣); otherwise, the algorithm needs to com-

pute the subgraph 𝑆 to check if ⌈𝜌𝑅 (𝑆)⌉ increases by 1 (lines 7-8),

and then update 𝑆∗ if it does increase. For the Del algorithm, which

maintains the AADS for edge deletion, its pseudo-code necessitates

merely a modification of line 1 in Algorithm 4 to 𝐸 ← 𝐸 − {𝑢, 𝑣}.
The correctness of Ins and Del is affirmed by Theorem 3.4 and

Theorem 5.1. Theorem 5.2 shows their time complexity.

Theorem 5.2. The time complexity of Ins and Del are 𝑂 (𝑚1.5)
because they only need to perform ReTest twice.

5.2 The improved algorithms
The primary limitation of the basic algorithms lies in their depen-

dency on reconstructing the orientation network for an updated

graph and performing a max-flow computation. In this subsection,

we propose two improved algorithms, Ins+ and Del+, designed to

maintain the AADS by preserving an “unreversible orientation”

contingent on a parameter 𝛼 . For a given integer 𝛼 , we define “re-

versible path” and “unreversible orientation” as follows.

Definition 5.3. (Reversible Path) Given a graph 𝐺 = (𝑉 , 𝐸), its
orientation �⃗� = (𝑉 , �⃗�) and an integer 𝛼 , a path 𝑣𝑠 〜 𝑣𝑡 is reversible

if: (1) 𝛿𝑣𝑠 < 𝛼 − 1 and 𝛿𝑣𝑡 > 𝛼 − 1; or (2) 𝛿𝑣𝑠 < 𝛼 and 𝛿𝑣𝑡 > 𝛼 .

628

Definition 5.4. (Unreversible Orientation) Given a graph 𝐺 =

(𝑉 , 𝐸), its orientation �⃗� = (𝑉 , �⃗�) and an integer 𝛼 , �⃗� is an unre-

versible orientation if there is no reversible path in �⃗� .

The rationale behind defining the unreversible path and the

unreversible orientation originates from Theorem 3.4. Note that

⌈𝜌𝑅 (𝑆𝛼)⌉ ≥ 𝛼 and ⌈𝜌𝑅 (𝑆𝛼+1)⌉ < 𝛼 + 1 hold if and only if 𝛼 =

⌈𝜌𝑅 (𝑆)⌉, where 𝑆∗ is the subgraph returned by invoking the ReTest
algorithm with ∗ as the guess value. It can be proven that 𝑆∗ com-

prises the vertices that either have a bounty of at least ∗ or can reach
another vertex with a bounty of no less than ∗ in an unreversible

orientation �⃗� . Notably, 𝑆𝛼 consists of vertices within the AADS.

By maintaining an unreversible orientation �⃗� and two subgraphs

𝑆𝛼 and 𝑆𝛼+1, we can determine whether ⌈𝜌𝑅 (𝑆)⌉ changes due to
the insertion or deletion of edges and thus maintain AADS. This

constitutes the central idea of our Ins+ and Del+ algorithms.

According to the above main idea, the unreversible orientation �⃗�

and two subgraphs 𝑆𝛼 and 𝑆𝛼+1 must be taken as inputs of the Ins+
and Del+ algorithms. We provide the following method to compute

the inputs �⃗� , 𝑆𝛼 and 𝑆𝛼+1. First, we perform AADSGA (or AADSLA)
with 𝛼 = ⌈𝜌𝑅 (𝑆∗)⌉, ensuring that there is no path 𝑣𝑠 〜 𝑣𝑡 with

𝛿𝑣𝑠 < 𝛼 − 1 and 𝛿𝑣𝑡 > 𝛼 − 1 in �⃗� . Subsequently, we construct the

re-orientation network based on �⃗� and 𝛼 + 1, and invoke ReTest
again to ensure no path 𝑣𝑠 〜 𝑣𝑡 exists with 𝛿𝑣𝑠 < 𝛼 and 𝛿𝑣𝑡 > 𝛼 in

�⃗� . With the unreversible orientation �⃗� , 𝑆𝛼 and 𝑆𝛼+1 can be derived

easily. Below, we introduce our improved algorithms in detail.

The Ins+ algorithm for edge insertion.When an edge (𝑢, 𝑣) is
inserted, it is imperative to insert two directed edges into �⃗� and

maintain �⃗� as an unreversible orientation. We present a three-step

procedure for edge insertion, detailed as follows: (1) insert (𝑢, 𝑣)
into the graph𝐺 ; (2) insert a directed edge into the orientation �⃗� ; (3)

repeat step 2. This procedure ensures that the bounty of any vertex

changes by only one unit at each step, simplifying the identification

of reversible paths and thereby aiding in maintaining �⃗� .

The Ins+ algorithm is outlined in Algorithm 5, which accepts

three specific parameters: the unreversible orientation �⃗� , 𝑆𝛼 and

𝑆𝛼+1. The main idea of Ins+ is to maintain the AADS by ensuring

that �⃗� remains an unreversible orientation throughout each stage

of the three-step process. In Step 1 (lines 1-3), Ins+ inserts (𝑢, 𝑣) into
𝐺 , which increments the degrees of𝑢 and 𝑣 by one each, potentially

altering their bounties 𝛿𝑢 and 𝛿𝑣 . Taking 𝑢 as an example, if 𝑢 ∈ 𝑅,
then by Definition 3.2, 𝛿𝑢 remains unchanged, thus preserving

the irreversibility of �⃗� . Alternatively, if 𝑢 ∉ 𝑅, the DecBounty
procedure is invoked to reduce 𝛿𝑢 by 1 and make �⃗� be unreversible

again (line 2). In DecBounty, when 𝑥 is in 𝑆𝛼+1, it checks if 𝛿𝑥
decreases to 𝛼 −1. If it does, since 𝑥 can reach a vertex𝑦 in �⃗� whose

bounty is at least 𝛼 + 1, we reverse the reversible path 𝑥 〜 𝑦 and

update 𝛿𝑦 and 𝛿𝑥 (line 23). Importantly, DecBounty updates the set
𝑆𝛼+1, regardless of whether 𝛿𝑥 equals 𝛼 − 1 (line 24). For the case
of 𝑥 ∈ 𝑆𝛼\𝑆𝛼−1, if 𝛿𝑥 = 𝛼 − 2, a reversible path 𝑥 〜 𝑦 is identified

as 𝑥 can reach a vertex 𝑦 with bounty no less than 𝛼 . This path is

then reversed, and updates are applied to both 𝛿𝑦 and 𝛿𝑥 (line 26).

Note that DecBounty maintains the set 𝑆𝛼 once 𝑥 ∈ 𝑆𝛼\𝑆𝛼−1 (line
27). For all other cases, it is clear that �⃗� remains unreversible, as

there are no reversible paths present in the input orientation �⃗� .

In step 2 of Ins+ (lines 4-7), a directed edge ⟨𝑝, 𝑞⟩ is inserted into
�⃗� , with the orientation determined by the membership of 𝑢 and 𝑣

Algorithm 5: Ins+(�⃗�, 𝐴, 𝑅, 𝑆𝛼 , 𝑆𝛼+1, (𝑢, 𝑣))
Input: A graph𝐺 = (𝑉 , 𝐸) , an orientation �⃗� = (𝑉 , �⃗�) , an anchor vertex set

𝐴, a reference vertex set 𝑅, the subgraph 𝑆𝛼 , 𝑆𝛼+1 , and the edge

(𝑢, 𝑣) to be inserted

Output: The updated 𝑆𝛼 , 𝑆𝛼+1 , and orientation �⃗�

1 𝐸 ← 𝐸 ∪ { (𝑢, 𝑣) };
2 if 𝑢 ∉ 𝑅 then DecBounty(𝑢) ;
3 if 𝑣 ∉ 𝑅 then DecBounty(𝑣) ;
4 if (𝑢 ∈ 𝑆𝛼+1 and 𝑣 ∉ 𝑆𝛼+1) or (𝑢 ∈ 𝑆𝛼 and 𝑣 ∉ 𝑆𝛼) then 𝑝 ← 𝑢; 𝑞 ← 𝑣;

5 else 𝑝 ← 𝑣; 𝑞 ← 𝑢;

6 �⃗� ← �⃗� ∪ {⟨𝑝,𝑞⟩};
7 IncBounty(𝑞) ;
8 Repeat lines 4-7;

9 if ⌈𝜌𝑅 (𝑆𝛼+1) ⌉ ≥ 𝛼 + 1 then 𝑆𝛼 ← 𝑆𝛼+1 ; 𝑆𝛼+1 ←LReTest(𝛼 + 2) ; 𝛼++;
10 else if ⌈𝜌𝑅 (𝑆𝛼) ⌉ < 𝛼 then 𝑆𝛼+1 ← 𝑆𝛼 ; 𝑆𝛼 ←LReTest(𝛼 − 1) ; 𝛼– –;

11 return (𝑆𝛼 , 𝑆𝛼+1, �⃗�)

12 Procedure IncBounty(𝑥)
13 𝛿𝑥++;

14 if 𝑥 ∈ 𝑉 \ 𝑆𝛼 and 𝛿𝑥 = 𝛼 then
15 if a path 𝑦 〜 𝑥 can be found, 𝛿𝑦 ≤ 𝛼 − 2 then Reverse the path; 𝛿𝑥–

–; 𝛿𝑦++;

16 else 𝑆𝛼 ← 𝑆𝛼 ∪ {𝑥 } ∪ {𝑦 |𝑦 can reach 𝑥 };
17 else if 𝑥 ∈ 𝑆𝛼 \ 𝑆𝛼+1 and 𝛿𝑥 = 𝛼 + 1 then
18 if a path 𝑦 〜 𝑥 can be found, 𝛿𝑦 ≤ 𝛼 − 1 then Reverse the path; 𝛿𝑥–

–; 𝛿𝑦++;

19 else 𝑆𝛼+1 ← 𝑆𝛼+1 ∪ {𝑥 } ∪ {𝑦 |𝑦 can reach 𝑥 };

20 Procedure DecBounty(𝑥)
21 𝛿𝑥– –;

22 if 𝑥 ∈ 𝑆𝛼+1 then
23 if 𝛿𝑥 = 𝛼 − 1 then Reverse a path 𝑥 〜 𝑦 where 𝛿𝑦 ≥ 𝛼 + 1; 𝛿𝑦– –;

𝛿𝑥++;

24 𝑆𝛼+1 ← {𝑦 |𝛿𝑦 ≥ 𝛼 + 1 or 𝑦 can reach any vertex with 𝛿 ≥ 𝛼 + 1};
25 else if 𝑥 ∈ 𝑆𝛼 \ 𝑆𝛼+1 then
26 if 𝛿𝑥 = 𝛼 − 2 then Reverse a path 𝑥 〜 𝑦, where 𝛿𝑦 ≥ 𝛼 , 𝛿𝑦– –, 𝛿𝑥++;

27 𝑆𝛼 ← {𝑦 |𝛿𝑦 ≥ 𝛼 or 𝑦 can reach any vertex with 𝛿 ≥ 𝛼 };

in sets 𝑆𝛼+1 or 𝑆𝛼 . This configuration ensures that after the edge’s

insertion, �⃗� hosts at most one reversible path. The insertion allows

vertex 𝑝 to retain its bounty 𝛿𝑝 , simultaneously increasing the in-

degree and the bounty of vertex 𝑞, regardless of its presence in

set 𝑅. Following this, the Ins+ algorithm engages the IncBounty(𝑞)
procedure to preserve the irreversibility of �⃗� by identifying a po-

tential reversal path (lines 12-19). In IncBounty, after increasing 𝑥 ’s
bounty by 1, if 𝑥 belongs to 𝑉 \𝑆𝛼 and 𝛿𝑥 reaches 𝛼 , the procedure

checks for a reversible path 𝑦 〜 𝑥 where 𝛿𝑦 ≤ 𝛼 − 2. If such a

path is identified, it is reversed, and both 𝛿𝑥 and 𝛿𝑦 are updated to

restore the irreversibility of �⃗� . Conversely, 𝑆𝛼 is maintained as 𝑥

now has a bounty equal to 𝛼 . For the case where 𝑥 is in 𝑆𝛼\𝑆𝛼+1
and 𝛿𝑥 equals 𝛼 + 1, if the procedure identifies a reversible path
𝑦 〜 𝑥 with 𝛿𝑦 ≤ 𝛼 − 1, then the path is reversed and 𝛿𝑥 and 𝛿𝑦

are adjusted accordingly to make �⃗� unreversible again. Otherwise,

𝑆𝛼+1 is maintained since the bounty of 𝑥 now equals 𝛼 + 1. For
other cases where these specific conditions do not apply, �⃗� remains

irreversible. Step 3 repeats the operations of step 2 to continuously

uphold the irreversibility of �⃗� (line 8).

After the three-step procedure, Ins+ ensures that �⃗� retains an

unreversible orientation upon edge insertion, and then it maintains

the sets 𝑆𝛼 and 𝑆𝛼+1 as follows. If ⌈𝜌𝑅 (𝑆𝛼+1)⌉ ≥ 𝛼 + 1, indicating
that ⌈𝜌𝑅 (𝑆)⌉ = ⌈𝜌𝑅 (𝑆𝛼+1)⌉ = 𝛼 + 1, and then 𝑆𝛼 is updated to

𝑆𝛼+1, and Ins+ performs LReTest(𝛼 + 2) to re-calculate 𝑆𝛼+1 and

increase 𝛼 by 1 (line 9). While if ⌈𝜌𝑅 (𝑆𝛼)⌉ < 𝛼 , meaning ⌈𝜌𝑅 (𝑆)⌉ =

629

Table 1: Graph datasets statistics
Name Type 𝑛 𝑚 𝑑𝑚𝑎𝑥

dblp Citation network 1,653,767 8,159,739 2,119

skitter Computer network 1,696,416 11,095,299 35,455

indian Hyperlink network 1,382,868 13,591,473 21,869

pokec Social network 1,632,804 22,301,964 14,854

livejournal Social network 3,997,962 34,681,189 14,815

orkut Social network 3,072,441 117,185,083 33,313

weibo Social network 58,655,849 261,321,033 278,489

⌈𝜌𝑅 (𝑆𝛼+1)⌉ = 𝛼−1, 𝑆𝛼+1 is adjusted to 𝑆𝛼 , and LReTest is employed

to manage 𝑆𝛼−1 and decrease 𝛼 by 1 (line 10). Ultimately, the Ins+
algorithm outputs 𝑆𝛼 , 𝑆𝛼+1 and �⃗� where 𝑆𝛼 represents the AADS.

Owing to space limitations, the complete proof of correctness for

the Ins+ algorithm is provided in the full version [67]. Concerning

time complexity, Ins+ requires 𝑂 (Vol3 (𝑅)) time in the worst-case

scenario due to its reliance on LReTest. However, Ins+ exhibits

superior efficiency in practical settings for two reasons. Firstly, the

BFS process terminates upon encountering vertices with a bounty

less than or equal to a specific threshold, limiting the search domain

to vertices with bounties exceeding this threshold. Typically, these

vertices are located within the graph’s densest regions, which are

relatively small in practical scenarios, thus offering a restricted

search field for BFS. Secondly, LReTest is activated only when there

is a change in ⌈𝜌𝑅 (𝑆)⌉. Given that such changes are rare in real-

world applications, the execution of LReTest becomes infrequent.

The Del+ algorithm for edge deletion. The deletion of an edge

(𝑢, 𝑣) necessitates the removal of two directed edges from �⃗� . Analo-

gous to Ins+,Del+ involves a three-step procedure for edge deletion,
summarized as follows: (1) delete (𝑢, 𝑣) from the graph𝐺 ; (2) delete

a directed edge between 𝑢 and 𝑣 from the orientation �⃗� ; (3) repeat

step 2. Following such a three-step procedure, the Del+ algorithm

maintains the AADS by ensuring that �⃗� remains in an unreversible

orientation. The pseudo-code of Del+ differs from Ins+ in the fol-

lowing slight ways. First, the Del+ algorithm removes the edge

(𝑢, 𝑣) at line 1 and performs IncBounty at lines 2-3 to complete the

first step. In step 2 (step 3), Del+ directly obtains a directed edge

⟨𝑥,𝑦⟩ between vertices𝑢 and 𝑣 and invokesDecBounty(𝑦, ⟨𝑥,𝑦⟩) to
delete it without executing lines 4-7. Note that DecBounty in Del+
has one additional input parameter, i.e., the directed edge ⟨𝑥,𝑦⟩,
compared to DecBounty in Ins+, because Del+ needs to delete the

directed edge ⟨𝑥,𝑦⟩ from the orientation after lines 23, 26, and 27.

The correctness and time complexity of Del+ are similar to that of

Ins+ (detailed analysis can be found in our full version [67]).

6 EXPERIMENTS
6.1 Experiment settings
Different algorithms. We implement the proposed algorithms,

specifically AADSGA (Algorithm 1) and AADSLA (Algorithm 2),

for the problem of AADS search. For comparative analysis, algo-

rithms for searching the ADS presented in [20], namely, ADSGA
and ADSLA, are also implemented. We also incorporate the flow-

based local graph clustering algorithm with seed set inclusion [63],

FlowSeed, into our analysis. For dynamic graphs, we implement

the maintenance algorithms for AADS, which includes Ins (Algo-
rithm 4) and Ins+ (Algorithm 5) for edge insertion, alongside Del
and Del+ for edge deletion. In our experiments, we also compare

these maintenance algorithms with the method that uses ADSLA to

compute from scratch.

10
−3

10
−1

10
1

10
3

INF

dblp skitter indian pokec livejournal orkut weibo

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

ADSGA
AADSGA

ADSLA
AADSLA

FlowSeed

Figure 3: The comparison of computation time

10
0

10
1

10
2

10
3

10
4

INF

dblp skitter indian pokec livejournal orkut weibo

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

ADSGA
AADSGA

ADSLA
AADSLA

FlowSeed

Figure 4: The comparison of memory cost

Datasets. We curate a selection of 7 distinct datasets from two

sources: the Network Repository (https://networkrepository.com/)

and the Koblenz Network Collection (http://konect.cc/), detailed

comprehensively in Table 1. For the purposes of our study, all graphs

are treated as undirected and unweighted.

Experiment environment. All algorithms are coded using C++

and compiled with the GCC compiler using O3 optimization. Exper-

iments are conducted on a PC running a Linux operating system,

equipped with a 2.2 GHz AMD 3995WX 64-Core CPU and 256 GB

of memory. The cutoff time was 1,000 seconds for each query.

Seed vertex set generation.We adopt a query seed set generation

approach used in [20]. The process begins with randomly select-

ing a vertex 𝑣 from the overall set of vertices. Subsequently, 𝐴 is

constituted by randomly selecting a predefined number of vertices

(default is 8) from 𝑣 ’s 1-hop and 2-hop neighbors, explicitly includ-

ing 𝑣 itself in 𝐴. 𝑅 is then generated for each vertex 𝑢 in 𝐴 through

several (default: 3) random walks of a specified length (default:

2 steps), aimed at identifying additional members for 𝑅. Detailed

insights into the query set generation method can be found in [20].

6.2 Performance studies
Exp-1: The runtime and memory of different algorithms. We

generate 100 queries for each dataset and perform five algorithms:

ADSGA, ADSLA, AADSGA, AADSLA and FlowSeed. The average
running time and memory consumption of these algorithms across

datasets are illustrated in Figure 3 and Figure 4, respectively. The

results show that ADSGA incurs the highest runtime and memory

usage across the algorithms evaluated. In contrast, the proposed

AADSGA significantly boosts performance, achieving speeds 3 to

13 times faster and consuming 3.5 to 6.5 times less memory than

ADSGA. This improvement in efficiency is attributed to the defini-

tion of the approximate anchored densest subgraph, necessitating

merely integer guesses for 𝛼 , which aligns with our theoretical

analysis in Theorem 3.5. In terms of the local algorithms, AADSLA
demonstrably surpasses ADSLA and FlowSeed, exhibiting speedups
ranging from 9.5 to 206.5 times and 1.7 to 11 times, respectively,

while only slightly increasing memory consumption. This sub-

stantial advancement is credited to two primary factors. Firstly,

AADSLA reduces the number of LReTest invocations, facilitated

630

https://networkrepository.com/
http://konect.cc/

10
−6

10
−4

10
−2

10
0

dblp skitter indian pokec livejournal orkut weibo

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

G0 G1 G2 G3 G4 G5

Figure 5: The running time of AADSLA on graph density

10
−2

10
0

10
2

10
4

10
5

dblp skitter indian pokec livejournal orkut weibo

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
 (

M
B

)

G0 G1 G2 G3 G4 G5

Figure 6: The memory cost of AADSLA on graph density

by adopting integer guesses for 𝛼 like AADSGA. Secondly, it in-
troduces a “build-as-you-compute” search strategy within LReTest,
representing a significant enhancement over the iterative approach

utilized by ADSLA and FlowSeed. The results demonstrate the su-

periority of our AADSGA and AADSLA algorithms.

Additionally, the running time of AADSGA is at least 3 orders

of magnitude slower than that of AADSLA in finding the AADS.

This lag stems from AADSGA’s necessity to construct a complete

re-orientation network for each iteration of the probing with 𝛼 , a

requirement not shared by AADSLA. Regarding memory usage,

both AADSGA and AADSLA necessitate identical memory alloca-

tions, owing to their requirement for linear-sized data structures

dedicated to bounties, shortest path distances, and so on. Moreover,

the memory consumption of both algorithms scales linearly with

the size of the dataset. These results confirm the superior efficiency

of AADSLA in comparison to AADSGA.
Exp-2: Sensitivity of AADSLA on graph density.We commence

with an original graph, denoted by𝐺0, and generate five subgraphs,

𝐺1, . . . ,𝐺5, to represent different levels of density. We sample each

edge in 𝐺0 with a probability of 0.5𝑖 , and then extract the largest

connected component from the edge-induced subgraph as 𝐺𝑖 . A

suite of 1,000 queries, configured with default parameters, is gener-

ated for each𝐺𝑖 . Should a subgraph𝐺𝑖 not surpass the threshold of

128 vertices, it is excluded from our analysis. The average runtime

and memory occupancy of AADSLA on the eligible subgraphs are

shown in Figure 5 and Figure 6, respectively. It is evident that both

time costs and memory consumption of AADSLA increase with the

density of the graph. An average escalation in time cost by a factor

of 2.85 and in memory requirements by a factor of 3.66 is recorded

when the graph density is doubled. These findings highlight the

AADSLA algorithm’s notable scalability, showcasing its efficiency

across various graph densities.

Exp-3: Sensitivity of AADSLA on reference set size. Let 𝑘 be

the cardinality of the reference vertex set 𝑅, i.e., 𝑘 = |𝑅 |. Here we
evaluate the running time of AADSLA by varying 𝑘 within the set

{8, 16, 32, 64, 128}. We generate the set 𝑅 with the specified size 𝑘

using the default method, except that the size of 𝐴 is resized to
𝑘
4

when generating 𝐴. For each specified 𝑘 , a total of 100 queries are

generated, upon which AADSLA is executed for each dataset. The

10
−5

10
−3

10
−1

10
1

dblp skitter indian pokec livejournal orkut weibo

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

8 16 32 64 128

Figure 7: Sensitivity of AADSLA on reference set size

10
−1

10
1

10
3

INF

128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

ADSLA AADSLA

Figure 8: Computation time on larger reference vertex sets

10
−3

10
−2

10
−1

10
0

10
1

10
2

dblp skitter indian pokec livejournal orkut weibo

T
o

ta
l

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

Ins Ins+ Del Del+

Figure 9: The running time of maintenance algorithms

running time of AADSLA with different 𝑘 is depicted in Figure 7.

It is observed that, across the majority of datasets, the runtime of

AADSLA incrementally rises in conjunction with the expansion of𝑅.

Remarkably, AADSLA can efficiently search the AADS in under one

secondwithin all parameter settings.When the size of |𝑅 | is doubled,
the average computational overhead incurred byAADSLA increases

by a factor of only 0.585. In addition, the runtime of AADSLA and

ADSLA with larger 𝑘 from the set {128, 256, ..., 65536, 131072} are
depicted in Figure 8. Our AADSLA algorithm efficiently identifies

the AADS in under 10 seconds for all values of 𝑘 . While ADSLA fails

to deliver the ADS within the time limitation for larger 𝑘 . Again,

AADSLA achieves a runtime that is an order of magnitude faster

than ADSLA. These results demonstrate a significant insensitivity

of AADSLA to variations in the size of the reference vertex set,

thereby evidencing its robust scalability.

Exp-4: The running time of maintenance algorithms. We

generate 10,000 edges at random in each dataset to evaluate our

algorithms: Ins and Ins+ for edge insertion, along withDel andDel+
for edge deletion. Given a specific dataset, for a query 𝑞𝑖 within Exp-

1, where 1 ≤ 𝑖 ≤ 100, the processing time for 10,000 updated edges

is denoted as𝑇 (𝑞𝑖). The average time of maintenance algorithms for

handling 100 queries, each subjected to 10,000 updates, denoted as

𝑇 = 1

100

∑︁
100

𝑖=1𝑇 (𝑞𝑖), is presented in Figure 9. Building upon the in-

sights from Exp-1, it becomes apparent that the recomputation time

for 10,000 updated edges, as necessitated by algorithms aimed at (ap-

proximate) anchored densest subgraph search, significantly exceeds

the processing time required by our maintenance algorithms. For

instance, on the dblp dataset, the recomputation times mandated by

the optimal algorithms, i.e., ADSLA and AADSLA, for insertion or

deletion of 10,000 edges, totals to 0.02297 × 10000 = 229.7 seconds

631

Table 2: Comparison between ADS and AADS with different metrics

Dataset Subgraph
𝑅-subgraph density:

𝜌𝑅 (𝑆) =
2|𝐸 (𝑆) |−∑︁𝑣∈𝑆\𝑅 𝑑𝐺 (𝑣)

|𝑉 (𝑆) |

Density:
𝜌 (𝑆) = |𝐸 (𝑆) |

|𝑉 (𝑆) |

Local Conductance:

𝜋𝑅 (𝑆) = |𝐸 (𝑆,𝑆) |
Vol(𝑅∩𝑆)−(𝑆∩𝑅)

Conductance:

𝜋 (𝑆) = |𝐸 (𝑆,𝑆) |
min(Vol(𝑆),Vol(𝑉 \𝑆))

𝐹1-score:
𝐹1 (𝑆, 𝑅) = 2|𝑆∩𝑅 |

(|𝑆 |+|𝑅 |)

dblp ADS 10.543997 5.309548 0.767453 0.765460 0.289283

AADS 10.527255 (-0.016742) 5.299411 (-0.010137) 0.770350 (+0.002897) 0.768543 (+0.003083) 0.303563 (+0.01428)

skitter ADS 10.770263 5.411840 0.920304 0.844299 0.388504

AADS 10.769975 (-0.000288) 5.413363 (+0.001523) 0.926973 (+0.006669) 0.854317 (+0.010018) 0.407545 (+0.019041)

indian ADS 14.143748 7.646244 0.537802 0.513856 0.484087

AADS 14.110848 (-0.0329) 7.653666 (+0.007422) 0.543738 (+0.005936) 0.520130 (+0.006274) 0.523696 (+0.039609)

pokec ADS 6.5524730 3.276936 0.924950 0.924915 0.212633

AADS 6.5162130 (-0.03626) 3.258538 (-0.018398) 0.925808 (+0.000858) 0.925789 (+0.000874) 0.241173 (+0.02854)

livejournal ADS 11.759231 5.899040 0.789256 0.788460 0.286649

AADS 11.743309 (-0.015922) 5.897954 (-0.001086) 0.791998 (+0.002742) 0.790474 (+0.002014) 0.299826 (+0.013177)

orkut ADS 9.6347500 4.817375 0.937277 0.937277 0.209141

AADS 9.6118910 (-0.022859) 4.805945 (-0.01143) 0.937234 (-0.000043) 0.937234 (-0.000043) 0.227251 (+0.01811)

weibo ADS 2.6075910 1.456520 0.991176 0.970494 0.196846

AADS 2.4221570 (-0.185434) 1.296905 (-0.159615) 0.994090 (+0.002914) 0.993316 (+0.022822) 0.447595 (+0.250749)
Note: Density and conductance are two baseline community metrics. Density quantifies the average degree of vertices within a subgraph 𝑆 . Higher density signifies better internal

connectivity of 𝑆 . Conductance evaluates the ratio of the number of edges between a subgraph 𝑆 and the rest of the graph to the smaller of the sum of vertices’ degree in 𝑆 and its

complement. Lower conductance suggests that 𝑆 is relatively less connected to the rest of the graph. 𝑅-subgraph density [20] and local conductance [63] are localized extensions of

the density and conductance with respect to a reference set 𝑅. The 𝐹1-score uses 𝑅 as the ground truth to measure the locality; a higher 𝐹1-score indicates that 𝑆 closely resembles 𝑅.

and 0.000683 × 10, 000 = 6.83 seconds, respectively. Conversely,

our Ins and Ins+ algorithms require 0.327774 and 0.004887 seconds,

respectively, to maintain the AADS for edge insertion. For edge

deletion, Del and Del+ necessitate 0.325508 and 0.002675 seconds,

respectively. Moreover, Ins+ (Del+) consistently outperforms Ins
(Del) by at least an order of magnitude across all datasets. The

comparable processing times for Ins and Del result from both algo-

rithms requiring a mere two max-flow computations. Additionally,

the running time of Ins+ and Del+ are comparable in order of mag-

nitude, with the former being slightly longer. These results confirm

the efficiency of our algorithms for AADS maintenance.

Exp-5: Comparison of AADS and ADS. We evaluate the ADS

and AADS using five distinct metrics to demonstrate the effec-

tiveness of AADS as an approximation of ADS. This assessment

generates 100 queries by the procedures detailed in Section 6.1,

albeit with modifications to the number of random walks and steps,

set to 15 and 4, respectively. Using these queries, the AADSLA and

ADSLA algorithms are invoked to search AADS and ADS. For each

metric, the average values of AADS and ADS derived from 100

queries are presented in Table 2. Investigations into the 𝑅-subgraph

density across diverse datasets demonstrate that the divergence be-

tween 𝜌𝑅 (𝑆) and 𝜌𝑅 (𝑆∗) invariably remains below 0.2, with 𝜌𝑅 (𝑆)
consistently larger than 𝜌𝑅 (𝑆∗). This magnitude of discrepancy

is notably smaller than the theoretical maximum difference of 1

suggested by Fact 2.6, affirming the effectiveness of the AADS in

approximating the ADS. Concerning metrics of density, local con-

ductance, and conductance, the mean values of AADS over 100

queries are sometimes slightly greater than those of ADS and some-

times slightly less. However, overall, the mean values of AADS and

ADS are comparable. Regarding the 𝐹1 score, the average value of

AADS slightly exceeds that of ADS across all datasets. The reason

for this observation is as follows. When ⌈𝜌𝑅 (𝑆)⌉ ≥ 2, AADS con-

tains ADS exactly, and their 𝑅-subgraph densities are very close to

each other. This indicates that vertices belonging to AADS but not

ADS have a higher probability of being included in 𝑅, leading to

a slightly higher 𝐹1-score for AADS than for ADS. For the case of

⌈𝜌𝑅 (𝑆)⌉ ≤ 1, our AADSLA algorithm outputs 𝑅 directly as AADS,

which also results in a slightly higher 𝐹1-score for AADS than for

ADS. These results show that AADS is a good approximation to

ADS in terms of subgraph density and locality.

Remark.Onweibo, the difference 𝜌𝑅 (𝑆)−𝜌𝑅 (𝑆∗) is approximately

0.18, which is relatively larger than the differences observed on

other datasets. Notably, we find that 60 out of 100 queries satisfy

⌈𝜌𝑅 (𝑆)⌉ > 1, with the average 𝑅-subgraph densities of ADS and

AADS being 3.135726 and 3.097369, respectively, showing only

a small difference of 0.038357. The remaining 40 queries satisfy

⌈𝜌𝑅 (𝑆)⌉ = 1. In these cases, our AADSLA returns 𝑅 as AADS, while

ADSLA searches ADS, leading to a relatively large difference across

all 100 queries. However, ⌈𝜌𝑅 (𝑆)⌉ = 1 typically indicates that the

ADS is insufficiently dense, rendering it less useful in practice [20].

Our experiments show that when the ADS is denser (i.e., 𝜌𝑅 (𝑆) > 1),

𝜌𝑅 (𝑆) − 𝜌𝑅 (𝑆∗) is very small, indicating that AADS can effectively

approximate ADS in real-world applications.

Exp-6: Results on quires corresponding to ADSs with large
𝑅-subgraph density. We modify the generation method of the

anchor vertex set 𝐴 in Section 6.1 to produce queries with larger

𝜌𝑅 (𝑆). Instead of randomly selecting vertex 𝑣 , we choose a vertex

with higher clustering coefficients from the entire set of vertices.

Intuitively, the subgraph containing the set 𝐴 generated from this

vertex is more likely to exhibit a larger 𝜌𝑅 (𝑆). For generating 𝑅,

we use the default parameters of 3 random walks of 2 steps each

(i.e., PS1). Considering that a larger |𝑅 | may result in an ADS with a

higher 𝜌𝑅 (𝑆), we also apply another parameter setting: 15 random

walks of 4 steps each (i.e., PS2). Eventually, we generate 100 queries

with 𝜌𝑅 (𝑆) ≥ 5 for PS1 and 100 queries with 𝜌𝑅 (𝑆) ≥ 15 for PS2.

Table 3 shows the average 𝑅-subgraph density for each dataset

under PS1 and PS2. It can be seen that for ADS 𝑆 and AADS 𝑆∗,
the difference between 𝜌𝑅 (𝑆) and 𝜌𝑅 (𝑆∗) is as low as 0.007 ≪ 1,

which again confirms the effectiveness of the AADS in approximat-

ing the ADS. Additionally, the average running time of different

algorithms across all datasets for PS1 and PS2 are illustrated in

Figure 11 and Figure 12, respectively. Our AADSGA algorithm is

faster than the ADSGA algorithm, and AADSLA significantly out-

performs both ADSLA and FlowSeed for all parameter settings.

Again, AADSLA improves upon the AADSGA by at least 3 orders of

magnitude. These results are consistent with the previous findings,

demonstrating the efficiency of AADSGA and AADSLA.
We also conduct an adversarial experiment on livejournal to

further demonstrate the irrelevance of algorithm efficiency to 𝑅-

subgraph density. Specifically, we set four intervals of 𝑅-subgraph

density under PS1 and PS2, i.e., [1, 10], [11, 20], [21, 30], [31, 40]
and [11, 20], [21, 30], [31, 40], [41, 50], respectively, and generate

100 queries for each interval. Figure 13 depicts the average runtime

632

9.29

9.31

9.33

9.35

0 10K 20K 30K 40K 50K
 0

 0.2

 0.4

 0.6

 0.8

 1
R

-s
u

b
g
ra

p
h

 d
en

si
ty

C
o

n
d
u

ct
an

ce

Update edges

ADS-RSD
AADS-RSD

ADS-CDT
AADS-CDT

(a) WikiElec

4.66

4.70

4.74

4.78

0 10K 20K 30K 40K 50K
 0

 0.2

 0.4

 0.6

 0.8

 1

R
-s

u
b

g
ra

p
h

 d
en

si
ty

C
o

n
d
u

ct
an

ce

Update edges

ADS-RSD
AADS-RSD

ADS-CDT
AADS-CDT

(b) Epinions

4.66

4.70

4.74

4.78

0 10K 20K 30K 40K 50K
 0

 0.2

 0.4

 0.6

 0.8

 1

R
-s

u
b

g
ra

p
h

 d
en

si
ty

C
o

n
d
u

ct
an

ce

Update edges

ADS-RSD
AADS-RSD

ADS-CDT
AADS-CDT

(c) Hepph

Figure 10: The 𝑅-subgraph densities (RDS) and conductances (CDT) of ADS and AADS on three temporal graphs

10
−3

10
−1

10
1

10
3

INF

dblp skitter indian pokec livejournal orkut weibo

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

ADSGA
AADSGA

ADSLA
AADSLA

FlowSeed

Figure 11: The running time of different algorithms (PS1)

10
−3

10
−1

10
1

10
3

INF

dblp skitter indian pokec livejournal orkut weibo

T
im

e
C

o
n

su
m

p
ti

o
n

 (
S

ec
)

ADSGA
AADSGA

ADSLA
AADSLA

FlowSeed

Figure 12: The running time of different algorithms (PS2)

of 100 queries for different algorithms. Consistent with previous

findings, our AADSGA and AADSLA algorithms show their supe-

riority in efficiency for all parameter settings. Additionally, the

running time of each algorithm in different intervals are of the

same order of magnitude, with only minor differences, indicating

the insensitivity of these algorithms to the 𝑅-subgraph density.

Exp-7: Results on dynamic graphs. Here, we evaluate our main-

tenance algorithms on temporal graphs, which represent naturally

evolving edge updates in real-world scenarios and are inherently

dynamic. This experimental setup is widely used in existing studies

[17, 22, 23, 25, 34, 40, 42, 43, 52, 55, 59, 64, 69, 70]. Three temporal

graphs,WikiElec, Epinions, andHepph, are used in this experiment,

all of which can be downloaded from the Network Repository. To

simulate the evolution process of edge deletion, we sort all edges

according to their timestamps in ascending order and use the com-

plete graph as the initial graph; then, 50,000 edges are deleted in

descending order of their timestamps. For edge insertion, we use

the opposite process: the graph consisting of𝑚 − 50, 000 edges is
the initial graph, and then 50,000 edges are inserted in ascending

order of their timestamps.

As a comparison, since there is no algorithm to maintain ADS

directly (except computation from scratch), we use the new graph

formed after each edge update as input to ADSLA to compute ADS,

which is very costly. Therefore, we roughly estimate the total time

required to be 𝑇 ∗ × 50,000, where 𝑇 ∗ is the average runtime of 100

queries per dataset when applying ADSLA. The total runtime for all

algorithms to update 50,000 edges inWikiElec, Epinions, andHepph

Table 3: 𝑅-subgraph densities of subgraphs with PS1 and PS2
Dataset dblp skitter indian pokec livejournal orkut weibo
ADS(PS1) 8.102760 8.204698 14.558106 7.338885 17.983923 7.003694 6.884859

AADS(PS1) 8.095092 8.201777 14.554896 7.337010 17.983014 7.003446 6.884206

Difference 0.007668 0.002921 0.003210 0.001875 0.000909 0.000248 0.000653
ADS(PS2) 28.304661 28.976499 55.890673 19.547565 43.357405 22.910484 16.348741

AADS(PS2) 28.302989 28.975587 55.889356 19.546004 43.356272 22.909059 16.348619

Difference 0.001672 0.000912 0.001317 0.001561 0.001133 0.001425 0.000122

is shown in Table 4. Clearly, our proposed maintenance algorithms

significantly outperform the re-computation method equipped with

ADSLA. The improved algorithms (i.e., Ins+ and Del+) are at least
one order of magnitude faster than the basic algorithms (i.e., Ins and
Del), again indicating their high efficiency. In addition, we sample

the 𝑅-subgraph density values and conductance values of AADS 𝑆∗

and ADS 𝑆 during the edge updating process, as shown in Figure 10.

It can be seen that the 𝑅-subgraph densities and conductances of

AADS and ADS are consistently very close to each other over time

for all three datasets, with 𝜌𝑅 (𝑆∗) being slightly lower than 𝜌𝑅 (𝑆).
These results again show that AADS is a good approximation of

ADS, consistent with the observations obtained from Exp-5.

6.3 Case study
We conduct a case study on a subgraph, dblpCCF, of the dblp

dataset, encompassing authors who have published in conferences

and journals recommended by the China Computer Federation,

along with their collaborative relationships. The dblpCCF subgraph
contains 1,207,754 vertices and 5,878,173 edges. To construct the

anchored set 𝐴 and the reference set 𝑅, we apply a random walk

technique with the parameters set to 15 walks of 4 steps each, fol-

lowing the procedure outlined in Section 6.1. The average runtime

of 100 queries for ADSGA and ADSLA are 35.370 seconds and 0.337

seconds, respectively. While AADSGA and AADSLA consume 8.746

seconds and 0.004 seconds, respectively, demonstrating 4x and 72x

improvements. Figure 14 shows the ADS and AADS by performing

ADSLA and AADSLA, with Lixin Zhou identified as the seed vertex

(represented by the red vertex). The yellow vertices, along with the

seed vertex, constitute the anchored set 𝐴, and all depicted vertices

are part of the reference set 𝑅. Note that |𝐴| = 8, both ADS and

AADS implicitly include an isolated vertex within 𝐴, which is not

shown in Figure 14, in alignment with the definitions. From Fig-

ure 14, it is evident that ADS, consisting of 43 vertices, is included

in AADS, which includes 61 vertices. All vertices within AADS are

elements of the reference set 𝑅, and AADS covers a wider subset of

vertices in 𝑅 than ADS. The 𝑅-subgraph densities of AADS and ADS

are 8.787 and 8.884, respectively, with a marginal difference not

surpassing 0.1, which shows that AADS is a good approximation

of ADS. Furthermore, Figure 14 distinctly highlights the significant

correlation of the additional green vertex on the right side of AADS

633

10
−3

10
−1

10
1

10
3

[1, 10] [11, 20] [21, 30] [31, 40]

T
im

e
C

o
n
su

m
p
ti

o
n
 (

S
ec

)

ADSGA
AADSGA

ADSLA

AADSLA
FlowSeed

(a) livejournal, PS1

10
−3

10
−1

10
1

10
3

[11, 20] [21, 30] [31, 40] [41, 50]

T
im

e
C

o
n
su

m
p
ti

o
n
 (

S
ec

)

ADSGA
AADSGA

ADSLA

AADSLA
FlowSeed

(b) livejournal, PS2

Figure 13: The runtime of different algorithms on livejournal

Table 4: Update time on temporal graphs (Second)
Dataset 𝑛 𝑚 ADSLA Ins Ins+ Del Del+
WikiElec 7,116 100,693 1, 200 3.080 0.015 3.085 0.041
Epinions 131,580 711,210 14, 150 8.044 0.023 8.118 0.093
Hepph 28,094, 3,148,447 132, 950 25.449 0.029 25.640 0.113

Feng Wang

Guojun Wang

Jing Li

Shui Yu

Sancheng Peng

Liang Lin

Chao Li

Shuhang Gu

Yu Qiao

Wenhao Wu
Shilei Wen

Zhipeng Luo

Lin Zha

Hrishikesh P. S

Ju Liu

Jiande Sun

Xiushan Nie

Wenbo Wan

Bin Zhang

Li Wang

Jing Li

Huaxiang Zhang

Lei Liu

Luc Van Gool

Dan Zhu

Siliang Tang

Kai Zhang

Jun Wang

Jun Yu

Kwangjin Yoon

Wenhao Wang
Pengfei Zhu

Dongqing Xie

Aimin Yang

Liangliang He

Chuan Tang

Lixin Zhou

Jiru Shan

Xiaocui Liu

Dong Zhao

Yufei Wang

Ze Pan

Bing Li

Jie Gao

Lijun Zhou

Hongzhan Liu

Guanghao Chen

Ruihuan Wu

Cong Wang

Cong Wan

Ruofan Zhou

Jinqing Qi

Zheng Tan

Rong Zeng

De Cheng

Ying Yuan

Hongtao Huang

Huiru Shao

Yanxia Lv

Yian Su

ADS AADS

Figure 14: Case study on dblpCCF

with the seed vertex. Similarly, the green vertex positioned in the

upper left corner shows a close association with ADS. The results

show that AADS is not only a good approximation of ADS, but also

better aligns with the reference set 𝑅 compared to ADS.

7 RELATEDWORK
Densest subgraph search. Our work is intricately linked to the

Densest Subgraph Search (DSS) problem, which seeks to identify a

subgraph exhibiting the highest edge density defined as the ratio

of the number of edges to the number of vertices [16, 24, 32]. This

problem has been approached through parametric maximum flow

methods, achieving a complexity of 𝑂 (𝑚𝑛 · log𝑛) [32]. However,
due to the prohibitive complexity of exact solutions for large-scale

graphs, there has been significant advancement in approximation

algorithms [8, 16, 24, 60]. Furthermore, the DSS problem has been

extensively generalized to various graph types, including weighted

[21], directed [16, 38, 44–46], bipartite [4, 33, 49], uncertain [50, 72],

and multilayer graphs [30, 31, 36].

A major class of variants of the DSS problem focuses on in-

corporating additional constraints into edge-density-based DSS

problem, including size constraints [5, 11, 14, 27, 38, 56, 66], seed

set [20, 26, 58], connectivity constraints [13, 47] and so on. Among

them, the seed set-based variation holds particular relevance to

our study. Dai et al. established the concept of 𝑅-subgraph density

for a vertex set 𝑆 , applying penalties to vertices outside a given

reference set 𝑅, leading to the formulation of the anchored densest

subgraph search problem [20]. They proposed a local algorithm to

efficiently identify the vertex set 𝑆 with the maximum 𝑅-subgraph

density, whose time complexity is independent of the input graph’s

size. Sozio and Gionis addressed the problem of seeking a set 𝑆 that

includes all query vertices 𝑄 ⊆ 𝑉 , with 𝑆 possessing the highest

minimum degree while meeting criteria like the maximum per-

missible distance between 𝑆 and 𝑄 [58]. They demonstrated the

effectiveness of adopting the Charikar greedy peeling algorithm for

optimal solutions. Fazzone et al. investigated the dense subgraph

with attractors and repulsers problem, aiming to identify a dense

subgraph 𝑆 that is proximal to a set of attractors, 𝐴, while main-

taining distance from a set of repulsers, 𝑅 [26]. This paper studies

the problem of approximate anchored densest subgraph search and

maintenance. Due to different problem definitions, the algorithms

described in [58] and [26] are not applicable to our problem. The

algorithms in [20], while solving our problem, are significantly less

efficient when dealing with large-scale graphs or sizable 𝑅 sets and

cannot maintain the ADS for dynamic graphs. In this paper, we

present, for the first time, efficient algorithms for searching the

AADS on both static and dynamic graphs.

The re-orientation network flow techniques. Our work is also

related to the re-orientation network flow techniques, initially de-

veloped to address the minimization of the maximum in-degree

problem [3, 6, 18]. The re-orientation network flow can also be used

to compute pseudoarboricity since the maximum in-degree of the

optimal orientation is equal to the pseudoarboricity [10]. Bezáková

proposed a renowned method to compute the exact optimal ori-

entation by using the re-orientation network flow technique and

binary search, achieving a time complexity of 𝑂 (|𝐸 |3/2 log𝑝) [10].
Blumenstock later enhanced this method, reducing the complexity

to 𝑂 (|𝐸 |3/2
√︁
log log𝑝) [12]. In terms of approximation algorithms,

Bezáková developed a 2-approximation algorithm with a runtime of

𝑂 (𝑚+𝑛) [10], while Kowalik proposed a (1+𝜖)-approximation algo-

rithm based on the early-stopped Dinic algorithm, which operates

with time complexity of 𝑂 (𝑚 log𝑛max{1, log 𝑝}/𝜖) [39]. Addition-
ally, Asahiro investigated the orientation of edges in a weighted

graph to minimize the maximum weighted out-degree [7]. To the

best of our knowledge, our research constitutes the first application

of the re-orientation network flow technique to the search and

maintenance of the approximate anchored densest subgraph.

8 CONCLUSION
In this paper, we study the problem of approximate anchored dens-

est subgraph search in static and dynamic graphs, where the 𝑅-

subgraph densities of the approximate solution and exact anchored

densest subgraph are equal after rounding upwards. We propose the

AADSGA algorithm equipped with the re-orientation network flow

technique and a binary search method. To improve the efficiency,

an innovative local algorithm is proposed that utilizes shortest-path

based methods to compute the max-flow from 𝑠 to 𝑡 around 𝑅 lo-

cally. Furthermore, for dynamic graphs, we develop both basic and

improved algorithms aimed at efficiently maintaining the AADS for

edge insertions and deletions. Comprehensive experiments and a

case study demonstrate the efficiency, scalability, and effectiveness

of our solutions.

ACKNOWLEDGMENTS
This work was partially supported by (i) NSFC-Grant U2241211;

(ii) the China Postdoctoral Science Foundations 2023TQ0026 and

2023M730251. Rong-Hua Li is the corresponding author of this

paper.

634

REFERENCES
[1] Fabeah AduOppong, Casey K Gardiner, Apu Kapadia, and Patrick P Tsang. 2008.

Social circles: Tackling privacy in social networks. In SOUPS.
[2] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. 2002. DBXplorer: A System

for Keyword-Based Search over Relational Databases. In ICDE. 5–16.
[3] Oswin Aichholzer, Franz Aurenhammer, and Gunter Rote. 1995. Optimal graph

orientation with storage applications. SFB-Report: F003-51, SFB Optimierung und

Kontrolle.

[4] Reid Andersen. 2008. A local algorithm for finding dense subgraphs. In SODA.
1003–1009.

[5] Reid Andersen and Kumar Chellapilla. 2009. Finding Dense Subgraphs with Size

Bounds. In WAW (Lecture Notes in Computer Science, Vol. 5427). 25–37.
[6] Srinivasa Rao Arikati, Anil Maheshwari, and Christos D. Zaroliagis. 1997. Effi-

cient Computation of Implicit Representations of Sparse Graphs. Discret. Appl.
Math. 78, 1-3 (1997), 1–16.

[7] Yuichi Asahiro, Eiji Miyano, Hirotaka Ono, and Kouhei Zenmyo. 2007. Graph

Orientation Algorithms to minimize the Maximum Outdegree. Int. J. Found.
Comput. Sci. 18, 2 (2007), 197–215.

[8] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest Subgraph

in Streaming and MapReduce. Proc. VLDB Endow. 5, 5 (2012), 454–465.
[9] Oana Denisa Balalau, Francesco Bonchi, T.H. Hubert Chan, Francesco Gullo,

and Mauro Sozio. 2015. Finding Subgraphs with Maximum Total Density and

Limited Overlap. InWSDM. 379–388.

[10] Ivona Bezakova. 2000. Compact representations of graphs and adjacency testing.

(2000).

[11] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan

Vijayaraghavan. 2010. Detecting high log-densities: an O (n 1/4) approximation

for densest k-subgraph. In STOC. 201–210.
[12] Markus Blumenstock. 2016. Fast Algorithms for Pseudoarboricity. In ALENEX.

SIAM, 113–126.

[13] Francesco Bonchi, David GarciaSoriano, Atsushi Miyauchi, and Charalampos E.

Tsourakakis. 2021. Finding densest k-connected subgraphs. Discret. Appl. Math.
305 (2021), 34–47.

[14] Nicolas Bourgeois, Aristotelis Giannakos, Giorgio Lucarelli, Ioannis Milis, and

Vangelis Th. Paschos. 2013. Exact and Approximation Algorithms for Densest

k-Subgraph. InWALCOM (Lecture Notes in Computer Science, Vol. 7748). 114–125.
[15] Lijun Chang and Miao Qiao. 2020. Deconstruct Densest Subgraphs. InWWW.

2747–2753.

[16] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In APPROX 2000 (Lecture Notes in Computer Science,
Vol. 1913). Springer, 84–95.

[17] Qing Chen, Oded Lachish, Sven Helmer, and Michael H. Bohlen. 2022. Dynamic

Spanning Trees for Connectivity Queries on Fully-dynamic Undirected Graphs.

Proc. VLDB Endow. 15, 11 (2022), 3263–3276.
[18] Marek Chrobak and David Eppstein. 1991. Planar Orientations with Low Out-

degree and Compaction of Adjacency Matrices. Theor. Comput. Sci. 86, 2 (1991),
243–266.

[19] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability

and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (2003), 1338–1355.
[20] Yizhou Dai, Miao Qiao, and Lijun Chang. 2022. Anchored Densest Subgraph. In

SIGMOD. 1200–1213.
[21] Maximilien Danisch, T.H. Hubert Chan, and Mauro Sozio. 2017. Large Scale

Density-friendly Graph Decomposition via Convex Programming. In WWW.

233–242.

[22] Wenfei Fan, Muyang Liu, Chao Tian, Ruiqi Xu, and Jingren Zhou. 2020. Incre-

mentalization of Graph Partitioning Algorithms. Proc. VLDB Endow. 13, 8 (2020),
1261–1274.

[23] Wenfei Fan, Chao Tian, Ruiqi Xu, Qiang Yin, Wenyuan Yu, and Jingren Zhou.

2021. Incrementalizing Graph Algorithms. In SIGMOD. 459–471.
[24] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin

Lin. 2019. Efficient Algorithms for Densest Subgraph Discovery. Proc. VLDB
Endow. 12, 11 (2019), 1719–1732.

[25] Muhammad Farhan, Qing Wang, and Henning Koehler. 2022. BatchHL: An-

swering Distance Queries on Batch-Dynamic Networks at Scale. In SIGMOD.
2020–2033.

[26] Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E.

Tsourakakis, and Francesco Bonchi. 2022. Discovering Polarization Niches via

Dense Subgraphs with Attractors and Repulsers. Proc. VLDB Endow. 15, 13 (2022),
3883–3896.

[27] Uriel Feige, Guy Kortsarz, and David Peleg. 2001. The Dense k-Subgraph Problem.

Algorithmica 29, 3 (2001), 410–421.
[28] Eugene Fratkin, Brian T. Naughton, Douglas L. Brutlag, and Serafim Batzoglou.

2006. MotifCut: regulatory motifs finding with maximum density subgraphs. In

ISMB. 156–157.
[29] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. 2016. Top-k overlapping

densest subgraphs. Data Min. Knowl. Discov. 30, 5 (2016), 1134–1165.
[30] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-

position and Densest Subgraph in Multilayer Networks. In CIKM. 1807–1816.

[31] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.

2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and

Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.
[32] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

[33] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. FRAUDAR: Bounding Graph Fraud in the Face of Camouflage.

In KDD. 895–904.
[34] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023.

Personalized PageRank on Evolving Graphs with an Incremental Index-Update

Scheme. Proc. ACM Manag. Data 1, 1 (2023), 25:1–25:26.
[35] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. In SIGMOD. 1311–1322.
[36] Vinay Jethava and Niko Beerenwinkel. 2015. Finding Dense Subgraphs in Re-

lational Graphs. In ECML PKDD (Lecture Notes in Computer Science, Vol. 9285).
Springer, 641–654.

[37] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 2009. 3-HOP: a high-

compression indexing scheme for reachability query. In SIGMOD. 813–826.
[38] Samir Khuller and Barna Saha. 2009. On Finding Dense Subgraphs. In ICALP

(Lecture Notes in Computer Science, Vol. 5555). 597–608.
[39] Lukasz Kowalik. 2006. Approximation Scheme for Lowest Outdegree Orientation

and Graph Density Measures. In ISAAC (Lecture Notes in Computer Science,
Vol. 4288). Springer, 557–566.

[40] Pei Lee, Laks V. S. Lakshmanan, and Evangelos E. Milios. 2014. Incremental

cluster evolution tracking from highly dynamic network data. In ICDE. 3–14.
[41] Chengwei Lei and Jianhua Ruan. 2013. A novel link prediction algorithm for

reconstructing protein-protein interaction networks by topological similarity.

Bioinform. 29, 3 (2013), 355–364.
[42] Ziming Li, Youhuan Li, Xinhuan Chen, Lei Zou, Yang Li, Xiaofeng Yang, and

Hongbo Jiang. 2024. NewSP: A New Search Process for Continuous Subgraph

Matching over Dynamic Graphs. In ICDE. 3324–3337.
[43] Xuanming Liu, Tingjian Ge, and Yinghui Wu. 2019. Finding Densest Lasting

Subgraphs in Dynamic Graphs: A Stochastic Approach. In ICDE. 782–793.
[44] Wensheng Luo, Zhuo Tang, Yixiang Fang, Chenhao Ma, and Xu Zhou. 2023.

Scalable Algorithms for Densest Subgraph Discovery. In ICDE. 287–300.
[45] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie

Zhang, and Xuemin Lin. 2020. Efficient Algorithms for Densest Subgraph Dis-

covery on Large Directed Graphs. In SIGMOD. 1051–1066.
[46] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks V. S. Lakshmanan, Wenjie

Zhang, and Xuemin Lin. 2021. On Directed Densest Subgraph Discovery. ACM
Trans. Database Syst. 46, 4 (2021), 13:1–13:45.

[47] Wolfgang Mader. 1972. Existenz n-fach zusammenhaengender Teilgraphen in

Graphen genugend grosser Kantendichte. In Abhandlungen aus dem mathema-
tischen Seminar der Universitaet Hamburg, Vol. 37. 86–97.

[48] Alberto O. Mendelzon. 2000. Review - Authoritative Sources in a Hyperlinked

Environment. ACM SIGMOD Digit. Rev. 2 (2000).
[49] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos E.

Tsourakakis, and Shen Chen Xu. 2015. Scalable Large Near-Clique Detection in

Large-Scale Networks via Sampling. In KDD. 815–824.
[50] Atsushi Miyauchi and Akiko Takeda. 2018. Robust Densest Subgraph Discovery.

In ICDM. 1188–1193.

[51] Gergely Palla, Imre Derenyi, Illes Farkas, and Tamas Vicsek. 2005. Uncovering

the overlapping community structure of complex networks in nature and society.

Nature 435, 7043 (2005), 814–818.
[52] Yue Pang, Lei Zou, and Yu Liu. 2023. IFCA: Index-Free Community-Aware

Reachability Processing Over Large Dynamic Graphs. In ICDE. 2220–2234.
[53] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju,

and Christos Faloutsos. 2010. EigenSpokes: Surprising Patterns and Scalable

Community Chipping in Large Graphs. In PAKDD (Lecture Notes in Computer
Science, Vol. 6119). Springer, 435–448.

[54] Lu Qin, RongHua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest

Subgraph Discovery. In KDD. 965–974.
[55] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin, and

Jingren Zhou. 2018. Real-time Constrained Cycle Detection in Large Dynamic

Graphs. Proc. VLDB Endow. 11, 12 (2018), 1876–1888.
[56] Frederic Roupin and Alain Billionnet. 2008. A deterministic approximation algo-

rithm for the densest k-subgraph problem. International Journal of Operational
Research 3, 3 (2008), 301–314.

[57] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and XiaoNing Zhang.

2010. Dense Subgraphs with Restrictions and Applications to Gene Annotation

Graphs. In RECOMB (Lecture Notes in Computer Science, Vol. 6044). 456–472.
[58] Mauro Sozio and Aristides Gionis. 2010. The community-search problem and

how to plan a successful cocktail party. In KDD. ACM, 939–948.

[59] Kumar Sricharan and Kamalika Das. 2014. Localizing anomalous changes in

time-evolving graphs. In SIGMOD. 1347–1358.
[60] HsinHao Su and Hoa T. Vu. 2020. Distributed Dense Subgraph Detection and

Low Outdegree Orientation. In DISC (LIPIcs, Vol. 179). 15:1–15:18.
[61] Nikolaj Tatti and Aristides Gionis. 2013. Discovering Nested Communities. In

ECML PKDD (Lecture Notes in Computer Science, Vol. 8189). 32–47.
[62] Elena Valari, Maria Kontaki, and Apostolos N. Papadopoulos. 2012. Discovery of

Top-k Dense Subgraphs in Dynamic Graph Collections. In SSDBM (Lecture Notes
in Computer Science, Vol. 7338). 213–230.

[63] Nate Veldt, Christine Klymko, and David F. Gleich. 2019. Flow-Based Local

Graph Clustering with Better Seed Set Inclusion. In ICDM. 378–386.

[64] Victor Junqiu Wei, Raymond ChiWing Wong, and Cheng Long. 2020.

Architecture-Intact Oracle for Fastest Path and Time Queries on Dynamic Spatial

Networks. In SIGMOD. 1841–1856.

635

[65] A YEFIM. 1970. DINITZ: Algorithm for solution of a problem of maximum flow

in a network with power estimation. In Soviet Math. Doklady, Vol. 11. 1277–1280.
[66] Peng Zhang and Zhendong Liu. 2021. Approximating Max k-Uncut via LP-

rounding plus greed, with applications to Densest k-Subgraph. Theor. Comput.
Sci. 849 (2021), 173–183.

[67] Qi Zhang, Yalong Zhang, RongHua Li, and Guoren Wang. 2024. Approximate

Anchored Densest Subgraph Search on Large Static and Dynamic Graphs. Full
version: https://github.com/qizhang1996/aads (2024).

[68] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting Analyzing and

Visualizing Triangle K-Core Motifs within Networks. In ICDE. 1049–1060.

[69] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss

Maintenance in Evolving Graphs. In SIGMOD. 1024–1041.
[70] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast Order-Based

Approach for Core Maintenance. In ICDE. 337–348.
[71] Feng Zhao and Anthony K. H. Tung. 2012. Large Scale Cohesive Subgraphs

Discovery for Social Network Visual Analysis. Proc. VLDB Endow. 6, 2 (2012),
85–96.

[72] Zhaonian Zou. 2013. Polynomial-time algorithm for finding densest subgraphs

in uncertain graphs. In Proceedings of MLG Workshop.

636

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES
	3 An EFFICIENT GLOBAL ALGORITHM
	3.1 Checking whether ρR(S*) ≥α
	3.2 The AADSGA algorithm

	4 A NOVEL LOCAL ALGORITHM
	4.1 The framework of AADSLA algorithm
	4.2 Locally checking whether ρR(S*) ≥α
	4.3 Analysis of correctness and locality

	5 The Maintainance of AADS
	5.1 ADS update theorem and basic algorithms
	5.2 The improved algorithms

	6 Experiments
	6.1 Experiment settings
	6.2 Performance studies
	6.3 Case study

	7 RELATED WORK
	8 CONCLUSION
	Acknowledgments
	References

